// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements multi-precision rational numbers. package big import ( "encoding/binary" "errors" "fmt" "math" "strings" ) // A Rat represents a quotient a/b of arbitrary precision. // The zero value for a Rat represents the value 0. type Rat struct { // To make zero values for Rat work w/o initialization, // a zero value of b (len(b) == 0) acts like b == 1. // a.neg determines the sign of the Rat, b.neg is ignored. a, b Int } // NewRat creates a new Rat with numerator a and denominator b. func NewRat(a, b int64) *Rat { return new(Rat).SetFrac64(a, b) } // SetFloat64 sets z to exactly f and returns z. // If f is not finite, SetFloat returns nil. func (z *Rat) SetFloat64(f float64) *Rat { const expMask = 1<<11 - 1 bits := math.Float64bits(f) mantissa := bits & (1<<52 - 1) exp := int((bits >> 52) & expMask) switch exp { case expMask: // non-finite return nil case 0: // denormal exp -= 1022 default: // normal mantissa |= 1 << 52 exp -= 1023 } shift := 52 - exp // Optimization (?): partially pre-normalise. for mantissa&1 == 0 && shift > 0 { mantissa >>= 1 shift-- } z.a.SetUint64(mantissa) z.a.neg = f < 0 z.b.Set(intOne) if shift > 0 { z.b.Lsh(&z.b, uint(shift)) } else { z.a.Lsh(&z.a, uint(-shift)) } return z.norm() } // quotToFloat32 returns the non-negative float32 value // nearest to the quotient a/b, using round-to-even in // halfway cases. It does not mutate its arguments. // Preconditions: b is non-zero; a and b have no common factors. func quotToFloat32(a, b nat) (f float32, exact bool) { const ( // float size in bits Fsize = 32 // mantissa Msize = 23 Msize1 = Msize + 1 // incl. implicit 1 Msize2 = Msize1 + 1 // exponent Esize = Fsize - Msize1 Ebias = 1<<(Esize-1) - 1 Emin = 1 - Ebias Emax = Ebias ) // TODO(adonovan): specialize common degenerate cases: 1.0, integers. alen := a.bitLen() if alen == 0 { return 0, true } blen := b.bitLen() if blen == 0 { panic("division by zero") } // 1. Left-shift A or B such that quotient A/B is in [1<= B). // This is 2 or 3 more than the float32 mantissa field width of Msize: // - the optional extra bit is shifted away in step 3 below. // - the high-order 1 is omitted in "normal" representation; // - the low-order 1 will be used during rounding then discarded. exp := alen - blen var a2, b2 nat a2 = a2.set(a) b2 = b2.set(b) if shift := Msize2 - exp; shift > 0 { a2 = a2.shl(a2, uint(shift)) } else if shift < 0 { b2 = b2.shl(b2, uint(-shift)) } // 2. Compute quotient and remainder (q, r). NB: due to the // extra shift, the low-order bit of q is logically the // high-order bit of r. var q nat q, r := q.div(a2, a2, b2) // (recycle a2) mantissa := low32(q) haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 // (in effect---we accomplish this incrementally). if mantissa>>Msize2 == 1 { if mantissa&1 == 1 { haveRem = true } mantissa >>= 1 exp++ } if mantissa>>Msize1 != 1 { panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) } // 4. Rounding. if Emin-Msize <= exp && exp <= Emin { // Denormal case; lose 'shift' bits of precision. shift := uint(Emin - (exp - 1)) // [1..Esize1) lostbits := mantissa & (1<>= shift exp = 2 - Ebias // == exp + shift } // Round q using round-half-to-even. exact = !haveRem if mantissa&1 != 0 { exact = false if haveRem || mantissa&2 != 0 { if mantissa++; mantissa >= 1< 100...0, so shift is safe mantissa >>= 1 exp++ } } } mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<= B). // This is 2 or 3 more than the float64 mantissa field width of Msize: // - the optional extra bit is shifted away in step 3 below. // - the high-order 1 is omitted in "normal" representation; // - the low-order 1 will be used during rounding then discarded. exp := alen - blen var a2, b2 nat a2 = a2.set(a) b2 = b2.set(b) if shift := Msize2 - exp; shift > 0 { a2 = a2.shl(a2, uint(shift)) } else if shift < 0 { b2 = b2.shl(b2, uint(-shift)) } // 2. Compute quotient and remainder (q, r). NB: due to the // extra shift, the low-order bit of q is logically the // high-order bit of r. var q nat q, r := q.div(a2, a2, b2) // (recycle a2) mantissa := low64(q) haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 // (in effect---we accomplish this incrementally). if mantissa>>Msize2 == 1 { if mantissa&1 == 1 { haveRem = true } mantissa >>= 1 exp++ } if mantissa>>Msize1 != 1 { panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) } // 4. Rounding. if Emin-Msize <= exp && exp <= Emin { // Denormal case; lose 'shift' bits of precision. shift := uint(Emin - (exp - 1)) // [1..Esize1) lostbits := mantissa & (1<>= shift exp = 2 - Ebias // == exp + shift } // Round q using round-half-to-even. exact = !haveRem if mantissa&1 != 0 { exact = false if haveRem || mantissa&2 != 0 { if mantissa++; mantissa >= 1< 100...0, so shift is safe mantissa >>= 1 exp++ } } } mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1< 0 && !z.a.neg // 0 has no sign return z } // Inv sets z to 1/x and returns z. func (z *Rat) Inv(x *Rat) *Rat { if len(x.a.abs) == 0 { panic("division by zero") } z.Set(x) a := z.b.abs if len(a) == 0 { a = a.set(natOne) // materialize numerator } b := z.a.abs if b.cmp(natOne) == 0 { b = b.make(0) // normalize denominator } z.a.abs, z.b.abs = a, b // sign doesn't change return z } // Sign returns: // // -1 if x < 0 // 0 if x == 0 // +1 if x > 0 // func (x *Rat) Sign() int { return x.a.Sign() } // IsInt returns true if the denominator of x is 1. func (x *Rat) IsInt() bool { return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 } // Num returns the numerator of x; it may be <= 0. // The result is a reference to x's numerator; it // may change if a new value is assigned to x, and vice versa. // The sign of the numerator corresponds to the sign of x. func (x *Rat) Num() *Int { return &x.a } // Denom returns the denominator of x; it is always > 0. // The result is a reference to x's denominator; it // may change if a new value is assigned to x, and vice versa. func (x *Rat) Denom() *Int { x.b.neg = false // the result is always >= 0 if len(x.b.abs) == 0 { x.b.abs = x.b.abs.set(natOne) // materialize denominator } return &x.b } func (z *Rat) norm() *Rat { switch { case len(z.a.abs) == 0: // z == 0 - normalize sign and denominator z.a.neg = false z.b.abs = z.b.abs.make(0) case len(z.b.abs) == 0: // z is normalized int - nothing to do case z.b.abs.cmp(natOne) == 0: // z is int - normalize denominator z.b.abs = z.b.abs.make(0) default: neg := z.a.neg z.a.neg = false z.b.neg = false if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 { z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) if z.b.abs.cmp(natOne) == 0 { // z is int - normalize denominator z.b.abs = z.b.abs.make(0) } } z.a.neg = neg } return z } // mulDenom sets z to the denominator product x*y (by taking into // account that 0 values for x or y must be interpreted as 1) and // returns z. func mulDenom(z, x, y nat) nat { switch { case len(x) == 0: return z.set(y) case len(y) == 0: return z.set(x) } return z.mul(x, y) } // scaleDenom computes x*f. // If f == 0 (zero value of denominator), the result is (a copy of) x. func scaleDenom(x *Int, f nat) *Int { var z Int if len(f) == 0 { return z.Set(x) } z.abs = z.abs.mul(x.abs, f) z.neg = x.neg return &z } // Cmp compares x and y and returns: // // -1 if x < y // 0 if x == y // +1 if x > y // func (x *Rat) Cmp(y *Rat) int { return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs)) } // Add sets z to the sum x+y and returns z. func (z *Rat) Add(x, y *Rat) *Rat { a1 := scaleDenom(&x.a, y.b.abs) a2 := scaleDenom(&y.a, x.b.abs) z.a.Add(a1, a2) z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) return z.norm() } // Sub sets z to the difference x-y and returns z. func (z *Rat) Sub(x, y *Rat) *Rat { a1 := scaleDenom(&x.a, y.b.abs) a2 := scaleDenom(&y.a, x.b.abs) z.a.Sub(a1, a2) z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) return z.norm() } // Mul sets z to the product x*y and returns z. func (z *Rat) Mul(x, y *Rat) *Rat { z.a.Mul(&x.a, &y.a) z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) return z.norm() } // Quo sets z to the quotient x/y and returns z. // If y == 0, a division-by-zero run-time panic occurs. func (z *Rat) Quo(x, y *Rat) *Rat { if len(y.a.abs) == 0 { panic("division by zero") } a := scaleDenom(&x.a, y.b.abs) b := scaleDenom(&y.a, x.b.abs) z.a.abs = a.abs z.b.abs = b.abs z.a.neg = a.neg != b.neg return z.norm() } func ratTok(ch rune) bool { return strings.IndexRune("+-/0123456789.eE", ch) >= 0 } // Scan is a support routine for fmt.Scanner. It accepts the formats // 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent. func (z *Rat) Scan(s fmt.ScanState, ch rune) error { tok, err := s.Token(true, ratTok) if err != nil { return err } if strings.IndexRune("efgEFGv", ch) < 0 { return errors.New("Rat.Scan: invalid verb") } if _, ok := z.SetString(string(tok)); !ok { return errors.New("Rat.Scan: invalid syntax") } return nil } // SetString sets z to the value of s and returns z and a boolean indicating // success. s can be given as a fraction "a/b" or as a floating-point number // optionally followed by an exponent. If the operation failed, the value of // z is undefined but the returned value is nil. func (z *Rat) SetString(s string) (*Rat, bool) { if len(s) == 0 { return nil, false } // check for a quotient sep := strings.Index(s, "/") if sep >= 0 { if _, ok := z.a.SetString(s[0:sep], 10); !ok { return nil, false } s = s[sep+1:] var err error if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil { return nil, false } if len(z.b.abs) == 0 { return nil, false } return z.norm(), true } // check for a decimal point sep = strings.Index(s, ".") // check for an exponent e := strings.IndexAny(s, "eE") var exp Int if e >= 0 { if e < sep { // The E must come after the decimal point. return nil, false } if _, ok := exp.SetString(s[e+1:], 10); !ok { return nil, false } s = s[0:e] } if sep >= 0 { s = s[0:sep] + s[sep+1:] exp.Sub(&exp, NewInt(int64(len(s)-sep))) } if _, ok := z.a.SetString(s, 10); !ok { return nil, false } powTen := nat(nil).expNN(natTen, exp.abs, nil) if exp.neg { z.b.abs = powTen z.norm() } else { z.a.abs = z.a.abs.mul(z.a.abs, powTen) z.b.abs = z.b.abs.make(0) } return z, true } // String returns a string representation of x in the form "a/b" (even if b == 1). func (x *Rat) String() string { s := "/1" if len(x.b.abs) != 0 { s = "/" + x.b.abs.decimalString() } return x.a.String() + s } // RatString returns a string representation of x in the form "a/b" if b != 1, // and in the form "a" if b == 1. func (x *Rat) RatString() string { if x.IsInt() { return x.a.String() } return x.String() } // FloatString returns a string representation of x in decimal form with prec // digits of precision after the decimal point and the last digit rounded. func (x *Rat) FloatString(prec int) string { if x.IsInt() { s := x.a.String() if prec > 0 { s += "." + strings.Repeat("0", prec) } return s } // x.b.abs != 0 q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs) p := natOne if prec > 0 { p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil) } r = r.mul(r, p) r, r2 := r.div(nat(nil), r, x.b.abs) // see if we need to round up r2 = r2.add(r2, r2) if x.b.abs.cmp(r2) <= 0 { r = r.add(r, natOne) if r.cmp(p) >= 0 { q = nat(nil).add(q, natOne) r = nat(nil).sub(r, p) } } s := q.decimalString() if x.a.neg { s = "-" + s } if prec > 0 { rs := r.decimalString() leadingZeros := prec - len(rs) s += "." + strings.Repeat("0", leadingZeros) + rs } return s } // Gob codec version. Permits backward-compatible changes to the encoding. const ratGobVersion byte = 1 // GobEncode implements the gob.GobEncoder interface. func (x *Rat) GobEncode() ([]byte, error) { if x == nil { return nil, nil } buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4) i := x.b.abs.bytes(buf) j := x.a.abs.bytes(buf[0:i]) n := i - j if int(uint32(n)) != n { // this should never happen return nil, errors.New("Rat.GobEncode: numerator too large") } binary.BigEndian.PutUint32(buf[j-4:j], uint32(n)) j -= 1 + 4 b := ratGobVersion << 1 // make space for sign bit if x.a.neg { b |= 1 } buf[j] = b return buf[j:], nil } // GobDecode implements the gob.GobDecoder interface. func (z *Rat) GobDecode(buf []byte) error { if len(buf) == 0 { // Other side sent a nil or default value. *z = Rat{} return nil } b := buf[0] if b>>1 != ratGobVersion { return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1)) } const j = 1 + 4 i := j + binary.BigEndian.Uint32(buf[j-4:j]) z.a.neg = b&1 != 0 z.a.abs = z.a.abs.setBytes(buf[j:i]) z.b.abs = z.b.abs.setBytes(buf[i:]) return nil } // MarshalText implements the encoding.TextMarshaler interface. func (r *Rat) MarshalText() (text []byte, err error) { return []byte(r.RatString()), nil } // UnmarshalText implements the encoding.TextUnmarshaler interface. func (r *Rat) UnmarshalText(text []byte) error { if _, ok := r.SetString(string(text)); !ok { return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text) } return nil }