// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package rand implements pseudo-random number generators. // // Random numbers are generated by a Source. Top-level functions, such as // Float64 and Int, use a default shared Source that produces a deterministic // sequence of values each time a program is run. Use the Seed function to // initialize the default Source if different behavior is required for each run. // The default Source is safe for concurrent use by multiple goroutines. package rand import "sync" // A Source represents a source of uniformly-distributed // pseudo-random int64 values in the range [0, 1<<63). type Source interface { Int63() int64 Seed(seed int64) } // NewSource returns a new pseudo-random Source seeded with the given value. func NewSource(seed int64) Source { var rng rngSource rng.Seed(seed) return &rng } // A Rand is a source of random numbers. type Rand struct { src Source } // New returns a new Rand that uses random values from src // to generate other random values. func New(src Source) *Rand { return &Rand{src} } // Seed uses the provided seed value to initialize the generator to a deterministic state. func (r *Rand) Seed(seed int64) { r.src.Seed(seed) } // Int63 returns a non-negative pseudo-random 63-bit integer as an int64. func (r *Rand) Int63() int64 { return r.src.Int63() } // Uint32 returns a pseudo-random 32-bit value as a uint32. func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) } // Int31 returns a non-negative pseudo-random 31-bit integer as an int32. func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) } // Int returns a non-negative pseudo-random int. func (r *Rand) Int() int { u := uint(r.Int63()) return int(u << 1 >> 1) // clear sign bit if int == int32 } // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n). // It panics if n <= 0. func (r *Rand) Int63n(n int64) int64 { if n <= 0 { panic("invalid argument to Int63n") } if n&(n-1) == 0 { // n is power of two, can mask return r.Int63() & (n - 1) } max := int64((1 << 63) - 1 - (1<<63)%uint64(n)) v := r.Int63() for v > max { v = r.Int63() } return v % n } // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n). // It panics if n <= 0. func (r *Rand) Int31n(n int32) int32 { if n <= 0 { panic("invalid argument to Int31n") } if n&(n-1) == 0 { // n is power of two, can mask return r.Int31() & (n - 1) } max := int32((1 << 31) - 1 - (1<<31)%uint32(n)) v := r.Int31() for v > max { v = r.Int31() } return v % n } // Intn returns, as an int, a non-negative pseudo-random number in [0,n). // It panics if n <= 0. func (r *Rand) Intn(n int) int { if n <= 0 { panic("invalid argument to Intn") } if n <= 1<<31-1 { return int(r.Int31n(int32(n))) } return int(r.Int63n(int64(n))) } // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0). func (r *Rand) Float64() float64 { // A clearer, simpler implementation would be: // return float64(r.Int63n(1<<53)) / (1<<53) // However, Go 1 shipped with // return float64(r.Int63()) / (1 << 63) // and we want to preserve that value stream. // // There is one bug in the value stream: r.Int63() may be so close // to 1<<63 that the division rounds up to 1.0, and we've guaranteed // that the result is always less than 1.0. To fix that, we treat the // range as cyclic and map 1 back to 0. This is justified by observing // that while some of the values rounded down to 0, nothing was // rounding up to 0, so 0 was underrepresented in the results. // Mapping 1 back to zero restores some balance. // (The balance is not perfect because the implementation // returns denormalized numbers for very small r.Int63(), // and those steal from what would normally be 0 results.) // The remapping only happens 1/2⁵³ of the time, so most clients // will not observe it anyway. f := float64(r.Int63()) / (1 << 63) if f == 1 { f = 0 } return f } // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0). func (r *Rand) Float32() float32 { // Same rationale as in Float64: we want to preserve the Go 1 value // stream except we want to fix it not to return 1.0 // There is a double rounding going on here, but the argument for // mapping 1 to 0 still applies: 0 was underrepresented before, // so mapping 1 to 0 doesn't cause too many 0s. // This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64). f := float32(r.Float64()) if f == 1 { f = 0 } return f } // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n). func (r *Rand) Perm(n int) []int { m := make([]int, n) for i := 0; i < n; i++ { j := r.Intn(i + 1) m[i] = m[j] m[j] = i } return m } /* * Top-level convenience functions */ var globalRand = New(&lockedSource{src: NewSource(1)}) // Seed uses the provided seed value to initialize the default Source to a // deterministic state. If Seed is not called, the generator behaves as // if seeded by Seed(1). func Seed(seed int64) { globalRand.Seed(seed) } // Int63 returns a non-negative pseudo-random 63-bit integer as an int64 // from the default Source. func Int63() int64 { return globalRand.Int63() } // Uint32 returns a pseudo-random 32-bit value as a uint32 // from the default Source. func Uint32() uint32 { return globalRand.Uint32() } // Int31 returns a non-negative pseudo-random 31-bit integer as an int32 // from the default Source. func Int31() int32 { return globalRand.Int31() } // Int returns a non-negative pseudo-random int from the default Source. func Int() int { return globalRand.Int() } // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n) // from the default Source. // It panics if n <= 0. func Int63n(n int64) int64 { return globalRand.Int63n(n) } // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n) // from the default Source. // It panics if n <= 0. func Int31n(n int32) int32 { return globalRand.Int31n(n) } // Intn returns, as an int, a non-negative pseudo-random number in [0,n) // from the default Source. // It panics if n <= 0. func Intn(n int) int { return globalRand.Intn(n) } // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0) // from the default Source. func Float64() float64 { return globalRand.Float64() } // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0) // from the default Source. func Float32() float32 { return globalRand.Float32() } // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n) // from the default Source. func Perm(n int) []int { return globalRand.Perm(n) } // NormFloat64 returns a normally distributed float64 in the range // [-math.MaxFloat64, +math.MaxFloat64] with // standard normal distribution (mean = 0, stddev = 1) // from the default Source. // To produce a different normal distribution, callers can // adjust the output using: // // sample = NormFloat64() * desiredStdDev + desiredMean // func NormFloat64() float64 { return globalRand.NormFloat64() } // ExpFloat64 returns an exponentially distributed float64 in the range // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. // To produce a distribution with a different rate parameter, // callers can adjust the output using: // // sample = ExpFloat64() / desiredRateParameter // func ExpFloat64() float64 { return globalRand.ExpFloat64() } type lockedSource struct { lk sync.Mutex src Source } func (r *lockedSource) Int63() (n int64) { r.lk.Lock() n = r.src.Int63() r.lk.Unlock() return } func (r *lockedSource) Seed(seed int64) { r.lk.Lock() r.src.Seed(seed) r.lk.Unlock() }