// The template and inlines for the -*- C++ -*- internal _Meta class. // Copyright (C) 1997-2015 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/valarray_before.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{valarray} */ // Written by Gabriel Dos Reis #ifndef _VALARRAY_BEFORE_H #define _VALARRAY_BEFORE_H 1 #pragma GCC system_header #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // // Implementing a loosened valarray return value is tricky. // First we need to meet 26.3.1/3: we should not add more than // two levels of template nesting. Therefore we resort to template // template to "flatten" loosened return value types. // At some point we use partial specialization to remove one level // template nesting due to _Expr<> // // This class is NOT defined. It doesn't need to. template class _Constant; // Implementations of unary functions applied to valarray<>s. // I use hard-coded object functions here instead of a generic // approach like pointers to function: // 1) correctness: some functions take references, others values. // we can't deduce the correct type afterwards. // 2) efficiency -- object functions can be easily inlined // 3) be Koenig-lookup-friendly struct _Abs { template _Tp operator()(const _Tp& __t) const { return abs(__t); } }; struct _Cos { template _Tp operator()(const _Tp& __t) const { return cos(__t); } }; struct _Acos { template _Tp operator()(const _Tp& __t) const { return acos(__t); } }; struct _Cosh { template _Tp operator()(const _Tp& __t) const { return cosh(__t); } }; struct _Sin { template _Tp operator()(const _Tp& __t) const { return sin(__t); } }; struct _Asin { template _Tp operator()(const _Tp& __t) const { return asin(__t); } }; struct _Sinh { template _Tp operator()(const _Tp& __t) const { return sinh(__t); } }; struct _Tan { template _Tp operator()(const _Tp& __t) const { return tan(__t); } }; struct _Atan { template _Tp operator()(const _Tp& __t) const { return atan(__t); } }; struct _Tanh { template _Tp operator()(const _Tp& __t) const { return tanh(__t); } }; struct _Exp { template _Tp operator()(const _Tp& __t) const { return exp(__t); } }; struct _Log { template _Tp operator()(const _Tp& __t) const { return log(__t); } }; struct _Log10 { template _Tp operator()(const _Tp& __t) const { return log10(__t); } }; struct _Sqrt { template _Tp operator()(const _Tp& __t) const { return sqrt(__t); } }; // In the past, we used to tailor operator applications semantics // to the specialization of standard function objects (i.e. plus<>, etc.) // That is incorrect. Therefore we provide our own surrogates. struct __unary_plus { template _Tp operator()(const _Tp& __t) const { return +__t; } }; struct __negate { template _Tp operator()(const _Tp& __t) const { return -__t; } }; struct __bitwise_not { template _Tp operator()(const _Tp& __t) const { return ~__t; } }; struct __plus { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; struct __minus { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; struct __multiplies { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; struct __divides { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; struct __modulus { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; struct __bitwise_xor { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; struct __bitwise_and { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; struct __bitwise_or { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; struct __shift_left { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x << __y; } }; struct __shift_right { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x >> __y; } }; struct __logical_and { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; struct __logical_or { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; struct __logical_not { template bool operator()(const _Tp& __x) const { return !__x; } }; struct __equal_to { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; struct __not_equal_to { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; struct __less { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; struct __greater { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; struct __less_equal { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; struct __greater_equal { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; // The few binary functions we miss. struct _Atan2 { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return atan2(__x, __y); } }; struct _Pow { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return pow(__x, __y); } }; // We need these bits in order to recover the return type of // some functions/operators now that we're no longer using // function templates. template struct __fun { typedef _Tp result_type; }; // several specializations for relational operators. template struct __fun<__logical_not, _Tp> { typedef bool result_type; }; template struct __fun<__logical_and, _Tp> { typedef bool result_type; }; template struct __fun<__logical_or, _Tp> { typedef bool result_type; }; template struct __fun<__less, _Tp> { typedef bool result_type; }; template struct __fun<__greater, _Tp> { typedef bool result_type; }; template struct __fun<__less_equal, _Tp> { typedef bool result_type; }; template struct __fun<__greater_equal, _Tp> { typedef bool result_type; }; template struct __fun<__equal_to, _Tp> { typedef bool result_type; }; template struct __fun<__not_equal_to, _Tp> { typedef bool result_type; }; // // Apply function taking a value/const reference closure // template class _FunBase { public: typedef typename _Dom::value_type value_type; _FunBase(const _Dom& __e, value_type __f(_Arg)) : _M_expr(__e), _M_func(__f) {} value_type operator[](size_t __i) const { return _M_func (_M_expr[__i]); } size_t size() const { return _M_expr.size ();} private: const _Dom& _M_expr; value_type (*_M_func)(_Arg); }; template struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type> { typedef _FunBase<_Dom, typename _Dom::value_type> _Base; typedef typename _Base::value_type value_type; typedef value_type _Tp; _ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {} }; template struct _ValFunClos<_ValArray,_Tp> : _FunBase, _Tp> { typedef _FunBase, _Tp> _Base; typedef _Tp value_type; _ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {} }; template struct _RefFunClos<_Expr, _Dom> : _FunBase<_Dom, const typename _Dom::value_type&> { typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base; typedef typename _Base::value_type value_type; typedef value_type _Tp; _RefFunClos(const _Dom& __e, _Tp __f(const _Tp&)) : _Base(__e, __f) {} }; template struct _RefFunClos<_ValArray, _Tp> : _FunBase, const _Tp&> { typedef _FunBase, const _Tp&> _Base; typedef _Tp value_type; _RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&)) : _Base(__v, __f) {} }; // // Unary expression closure. // template class _UnBase { public: typedef typename _Arg::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _UnBase(const _Arg& __e) : _M_expr(__e) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr[__i]); } size_t size() const { return _M_expr.size(); } private: const _Arg& _M_expr; }; template struct _UnClos<_Oper, _Expr, _Dom> : _UnBase<_Oper, _Dom> { typedef _Dom _Arg; typedef _UnBase<_Oper, _Dom> _Base; typedef typename _Base::value_type value_type; _UnClos(const _Arg& __e) : _Base(__e) {} }; template struct _UnClos<_Oper, _ValArray, _Tp> : _UnBase<_Oper, valarray<_Tp> > { typedef valarray<_Tp> _Arg; typedef _UnBase<_Oper, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _UnClos(const _Arg& __e) : _Base(__e) {} }; // // Binary expression closure. // template class _BinBase { public: typedef typename _FirstArg::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _BinBase(const _FirstArg& __e1, const _SecondArg& __e2) : _M_expr1(__e1), _M_expr2(__e2) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr1[__i], _M_expr2[__i]); } size_t size() const { return _M_expr1.size(); } private: const _FirstArg& _M_expr1; const _SecondArg& _M_expr2; }; template class _BinBase2 { public: typedef typename _Clos::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _BinBase2(const _Clos& __e, const _Vt& __t) : _M_expr1(__e), _M_expr2(__t) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr1[__i], _M_expr2); } size_t size() const { return _M_expr1.size(); } private: const _Clos& _M_expr1; const _Vt& _M_expr2; }; template class _BinBase1 { public: typedef typename _Clos::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _BinBase1(const _Vt& __t, const _Clos& __e) : _M_expr1(__t), _M_expr2(__e) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr1, _M_expr2[__i]); } size_t size() const { return _M_expr2.size(); } private: const _Vt& _M_expr1; const _Clos& _M_expr2; }; template struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2> : _BinBase<_Oper, _Dom1, _Dom2> { typedef _BinBase<_Oper, _Dom1, _Dom2> _Base; typedef typename _Base::value_type value_type; _BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper,_ValArray, _ValArray, _Tp, _Tp> : _BinBase<_Oper, valarray<_Tp>, valarray<_Tp> > { typedef _BinBase<_Oper, valarray<_Tp>, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w) : _Base(__v, __w) {} }; template struct _BinClos<_Oper, _Expr, _ValArray, _Dom, typename _Dom::value_type> : _BinBase<_Oper, _Dom, valarray > { typedef typename _Dom::value_type _Tp; typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const _Dom& __e1, const valarray<_Tp>& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper, _ValArray, _Expr, typename _Dom::value_type, _Dom> : _BinBase<_Oper, valarray,_Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase<_Oper, valarray<_Tp>, _Dom> _Base; typedef typename _Base::value_type value_type; _BinClos(const valarray<_Tp>& __e1, const _Dom& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper, _Expr, _Constant, _Dom, typename _Dom::value_type> : _BinBase2<_Oper, _Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase2<_Oper,_Dom> _Base; typedef typename _Base::value_type value_type; _BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper, _Constant, _Expr, typename _Dom::value_type, _Dom> : _BinBase1<_Oper, _Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase1<_Oper, _Dom> _Base; typedef typename _Base::value_type value_type; _BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper, _ValArray, _Constant, _Tp, _Tp> : _BinBase2<_Oper, valarray<_Tp> > { typedef _BinBase2<_Oper,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {} }; template struct _BinClos<_Oper, _Constant, _ValArray, _Tp, _Tp> : _BinBase1<_Oper, valarray<_Tp> > { typedef _BinBase1<_Oper, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {} }; // // slice_array closure. // template class _SBase { public: typedef typename _Dom::value_type value_type; _SBase (const _Dom& __e, const slice& __s) : _M_expr (__e), _M_slice (__s) {} value_type operator[] (size_t __i) const { return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; } size_t size() const { return _M_slice.size (); } private: const _Dom& _M_expr; const slice& _M_slice; }; template class _SBase<_Array<_Tp> > { public: typedef _Tp value_type; _SBase (_Array<_Tp> __a, const slice& __s) : _M_array (__a._M_data+__s.start()), _M_size (__s.size()), _M_stride (__s.stride()) {} value_type operator[] (size_t __i) const { return _M_array._M_data[__i * _M_stride]; } size_t size() const { return _M_size; } private: const _Array<_Tp> _M_array; const size_t _M_size; const size_t _M_stride; }; template struct _SClos<_Expr, _Dom> : _SBase<_Dom> { typedef _SBase<_Dom> _Base; typedef typename _Base::value_type value_type; _SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {} }; template struct _SClos<_ValArray, _Tp> : _SBase<_Array<_Tp> > { typedef _SBase<_Array<_Tp> > _Base; typedef _Tp value_type; _SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {} }; _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif /* _CPP_VALARRAY_BEFORE_H */