// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include #include #include #include #include "config.h" #include "runtime.h" #include "arch.h" #include "defs.h" #include "malloc.h" #include "go-defer.h" #ifdef USING_SPLIT_STACK /* FIXME: These are not declared anywhere. */ extern void __splitstack_getcontext(void *context[10]); extern void __splitstack_setcontext(void *context[10]); extern void *__splitstack_makecontext(size_t, void *context[10], size_t *); extern void * __splitstack_resetcontext(void *context[10], size_t *); extern void *__splitstack_find(void *, void *, size_t *, void **, void **, void **); extern void __splitstack_block_signals (int *, int *); extern void __splitstack_block_signals_context (void *context[10], int *, int *); #endif #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK) # ifdef PTHREAD_STACK_MIN # define StackMin PTHREAD_STACK_MIN # else # define StackMin 8192 # endif #else # define StackMin 2 * 1024 * 1024 #endif static void schedule(G*); typedef struct Sched Sched; M runtime_m0; G runtime_g0; // idle goroutine for m0 #ifdef __rtems__ #define __thread #endif static __thread G *g; static __thread M *m; #ifndef SETCONTEXT_CLOBBERS_TLS static inline void initcontext(void) { } static inline void fixcontext(ucontext_t *c __attribute__ ((unused))) { } # else # if defined(__x86_64__) && defined(__sun__) // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs // register to that of the thread which called getcontext. The effect // is that the address of all __thread variables changes. This bug // also affects pthread_self() and pthread_getspecific. We work // around it by clobbering the context field directly to keep %fs the // same. static __thread greg_t fs; static inline void initcontext(void) { ucontext_t c; getcontext(&c); fs = c.uc_mcontext.gregs[REG_FSBASE]; } static inline void fixcontext(ucontext_t* c) { c->uc_mcontext.gregs[REG_FSBASE] = fs; } # else # error unknown case for SETCONTEXT_CLOBBERS_TLS # endif #endif // We can not always refer to the TLS variables directly. The // compiler will call tls_get_addr to get the address of the variable, // and it may hold it in a register across a call to schedule. When // we get back from the call we may be running in a different thread, // in which case the register now points to the TLS variable for a // different thread. We use non-inlinable functions to avoid this // when necessary. G* runtime_g(void) __attribute__ ((noinline, no_split_stack)); G* runtime_g(void) { return g; } M* runtime_m(void) __attribute__ ((noinline, no_split_stack)); M* runtime_m(void) { return m; } int32 runtime_gcwaiting; // Go scheduler // // The go scheduler's job is to match ready-to-run goroutines (`g's) // with waiting-for-work schedulers (`m's). If there are ready g's // and no waiting m's, ready() will start a new m running in a new // OS thread, so that all ready g's can run simultaneously, up to a limit. // For now, m's never go away. // // By default, Go keeps only one kernel thread (m) running user code // at a single time; other threads may be blocked in the operating system. // Setting the environment variable $GOMAXPROCS or calling // runtime.GOMAXPROCS() will change the number of user threads // allowed to execute simultaneously. $GOMAXPROCS is thus an // approximation of the maximum number of cores to use. // // Even a program that can run without deadlock in a single process // might use more m's if given the chance. For example, the prime // sieve will use as many m's as there are primes (up to runtime_sched.mmax), // allowing different stages of the pipeline to execute in parallel. // We could revisit this choice, only kicking off new m's for blocking // system calls, but that would limit the amount of parallel computation // that go would try to do. // // In general, one could imagine all sorts of refinements to the // scheduler, but the goal now is just to get something working on // Linux and OS X. struct Sched { Lock; G *gfree; // available g's (status == Gdead) int32 goidgen; G *ghead; // g's waiting to run G *gtail; int32 gwait; // number of g's waiting to run int32 gcount; // number of g's that are alive int32 grunning; // number of g's running on cpu or in syscall M *mhead; // m's waiting for work int32 mwait; // number of m's waiting for work int32 mcount; // number of m's that have been created volatile uint32 atomic; // atomic scheduling word (see below) int32 profilehz; // cpu profiling rate bool init; // running initialization bool lockmain; // init called runtime.LockOSThread Note stopped; // one g can set waitstop and wait here for m's to stop }; // The atomic word in sched is an atomic uint32 that // holds these fields. // // [15 bits] mcpu number of m's executing on cpu // [15 bits] mcpumax max number of m's allowed on cpu // [1 bit] waitstop some g is waiting on stopped // [1 bit] gwaiting gwait != 0 // // These fields are the information needed by entersyscall // and exitsyscall to decide whether to coordinate with the // scheduler. Packing them into a single machine word lets // them use a fast path with a single atomic read/write and // no lock/unlock. This greatly reduces contention in // syscall- or cgo-heavy multithreaded programs. // // Except for entersyscall and exitsyscall, the manipulations // to these fields only happen while holding the schedlock, // so the routines holding schedlock only need to worry about // what entersyscall and exitsyscall do, not the other routines // (which also use the schedlock). // // In particular, entersyscall and exitsyscall only read mcpumax, // waitstop, and gwaiting. They never write them. Thus, writes to those // fields can be done (holding schedlock) without fear of write conflicts. // There may still be logic conflicts: for example, the set of waitstop must // be conditioned on mcpu >= mcpumax or else the wait may be a // spurious sleep. The Promela model in proc.p verifies these accesses. enum { mcpuWidth = 15, mcpuMask = (1<>mcpuShift)&mcpuMask) #define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask) #define atomic_waitstop(v) (((v)>>waitstopShift)&1) #define atomic_gwaiting(v) (((v)>>gwaitingShift)&1) Sched runtime_sched; int32 runtime_gomaxprocs; bool runtime_singleproc; static bool canaddmcpu(void); // An m that is waiting for notewakeup(&m->havenextg). This may // only be accessed while the scheduler lock is held. This is used to // minimize the number of times we call notewakeup while the scheduler // lock is held, since the m will normally move quickly to lock the // scheduler itself, producing lock contention. static M* mwakeup; // Scheduling helpers. Sched must be locked. static void gput(G*); // put/get on ghead/gtail static G* gget(void); static void mput(M*); // put/get on mhead static M* mget(G*); static void gfput(G*); // put/get on gfree static G* gfget(void); static void matchmg(void); // match m's to g's static void readylocked(G*); // ready, but sched is locked static void mnextg(M*, G*); static void mcommoninit(M*); void setmcpumax(uint32 n) { uint32 v, w; for(;;) { v = runtime_sched.atomic; w = v; w &= ~(mcpuMask<entry); fn(g->param); runtime_goexit(); } // Switch context to a different goroutine. This is like longjmp. static void runtime_gogo(G*) __attribute__ ((noinline)); static void runtime_gogo(G* newg) { #ifdef USING_SPLIT_STACK __splitstack_setcontext(&newg->stack_context[0]); #endif g = newg; newg->fromgogo = true; fixcontext(&newg->context); setcontext(&newg->context); runtime_throw("gogo setcontext returned"); } // Save context and call fn passing g as a parameter. This is like // setjmp. Because getcontext always returns 0, unlike setjmp, we use // g->fromgogo as a code. It will be true if we got here via // setcontext. g == nil the first time this is called in a new m. static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline)); static void runtime_mcall(void (*pfn)(G*)) { M *mp; G *gp; #ifndef USING_SPLIT_STACK int i; #endif // Ensure that all registers are on the stack for the garbage // collector. __builtin_unwind_init(); mp = m; gp = g; if(gp == mp->g0) runtime_throw("runtime: mcall called on m->g0 stack"); if(gp != nil) { #ifdef USING_SPLIT_STACK __splitstack_getcontext(&g->stack_context[0]); #else gp->gcnext_sp = &i; #endif gp->fromgogo = false; getcontext(&gp->context); // When we return from getcontext, we may be running // in a new thread. That means that m and g may have // changed. They are global variables so we will // reload them, but the addresses of m and g may be // cached in our local stack frame, and those // addresses may be wrong. Call functions to reload // the values for this thread. mp = runtime_m(); gp = runtime_g(); } if (gp == nil || !gp->fromgogo) { #ifdef USING_SPLIT_STACK __splitstack_setcontext(&mp->g0->stack_context[0]); #endif mp->g0->entry = (byte*)pfn; mp->g0->param = gp; // It's OK to set g directly here because this case // can not occur if we got here via a setcontext to // the getcontext call just above. g = mp->g0; fixcontext(&mp->g0->context); setcontext(&mp->g0->context); runtime_throw("runtime: mcall function returned"); } } // Keep trace of scavenger's goroutine for deadlock detection. static G *scvg; // The bootstrap sequence is: // // call osinit // call schedinit // make & queue new G // call runtime_mstart // // The new G calls runtime_main. void runtime_schedinit(void) { int32 n; const byte *p; m = &runtime_m0; g = &runtime_g0; m->g0 = g; m->curg = g; g->m = m; initcontext(); m->nomemprof++; runtime_mallocinit(); mcommoninit(m); runtime_goargs(); runtime_goenvs(); // For debugging: // Allocate internal symbol table representation now, // so that we don't need to call malloc when we crash. // runtime_findfunc(0); runtime_gomaxprocs = 1; p = runtime_getenv("GOMAXPROCS"); if(p != nil && (n = runtime_atoi(p)) != 0) { if(n > maxgomaxprocs) n = maxgomaxprocs; runtime_gomaxprocs = n; } setmcpumax(runtime_gomaxprocs); runtime_singleproc = runtime_gomaxprocs == 1; canaddmcpu(); // mcpu++ to account for bootstrap m m->helpgc = 1; // flag to tell schedule() to mcpu-- runtime_sched.grunning++; // Can not enable GC until all roots are registered. // mstats.enablegc = 1; m->nomemprof--; } extern void main_init(void) __asm__ ("__go_init_main"); extern void main_main(void) __asm__ ("main.main"); // The main goroutine. void runtime_main(void) { // Lock the main goroutine onto this, the main OS thread, // during initialization. Most programs won't care, but a few // do require certain calls to be made by the main thread. // Those can arrange for main.main to run in the main thread // by calling runtime.LockOSThread during initialization // to preserve the lock. runtime_LockOSThread(); runtime_sched.init = true; scvg = __go_go(runtime_MHeap_Scavenger, nil); main_init(); runtime_sched.init = false; if(!runtime_sched.lockmain) runtime_UnlockOSThread(); // For gccgo we have to wait until after main is initialized // to enable GC, because initializing main registers the GC // roots. mstats.enablegc = 1; main_main(); runtime_exit(0); for(;;) *(int32*)0 = 0; } // Lock the scheduler. static void schedlock(void) { runtime_lock(&runtime_sched); } // Unlock the scheduler. static void schedunlock(void) { M *m; m = mwakeup; mwakeup = nil; runtime_unlock(&runtime_sched); if(m != nil) runtime_notewakeup(&m->havenextg); } void runtime_goexit(void) { g->status = Gmoribund; runtime_gosched(); } void runtime_goroutineheader(G *g) { const char *status; switch(g->status) { case Gidle: status = "idle"; break; case Grunnable: status = "runnable"; break; case Grunning: status = "running"; break; case Gsyscall: status = "syscall"; break; case Gwaiting: if(g->waitreason) status = g->waitreason; else status = "waiting"; break; case Gmoribund: status = "moribund"; break; default: status = "???"; break; } runtime_printf("goroutine %d [%s]:\n", g->goid, status); } void runtime_tracebackothers(G *me) { G *g; for(g = runtime_allg; g != nil; g = g->alllink) { if(g == me || g->status == Gdead) continue; runtime_printf("\n"); runtime_goroutineheader(g); // runtime_traceback(g->sched.pc, g->sched.sp, 0, g); } } // Mark this g as m's idle goroutine. // This functionality might be used in environments where programs // are limited to a single thread, to simulate a select-driven // network server. It is not exposed via the standard runtime API. void runtime_idlegoroutine(void) { if(g->idlem != nil) runtime_throw("g is already an idle goroutine"); g->idlem = m; } static void mcommoninit(M *m) { m->id = runtime_sched.mcount++; m->fastrand = 0x49f6428aUL + m->id + runtime_cputicks(); if(m->mcache == nil) m->mcache = runtime_allocmcache(); runtime_callers(1, m->createstack, nelem(m->createstack)); // Add to runtime_allm so garbage collector doesn't free m // when it is just in a register or thread-local storage. m->alllink = runtime_allm; // runtime_NumCgoCall() iterates over allm w/o schedlock, // so we need to publish it safely. runtime_atomicstorep(&runtime_allm, m); } // Try to increment mcpu. Report whether succeeded. static bool canaddmcpu(void) { uint32 v; for(;;) { v = runtime_sched.atomic; if(atomic_mcpu(v) >= atomic_mcpumax(v)) return 0; if(runtime_cas(&runtime_sched.atomic, v, v+(1<lockedm) != nil && canaddmcpu()) { mnextg(m, g); return; } // If g is the idle goroutine for an m, hand it off. if(g->idlem != nil) { if(g->idlem->idleg != nil) { runtime_printf("m%d idle out of sync: g%d g%d\n", g->idlem->id, g->idlem->idleg->goid, g->goid); runtime_throw("runtime: double idle"); } g->idlem->idleg = g; return; } g->schedlink = nil; if(runtime_sched.ghead == nil) runtime_sched.ghead = g; else runtime_sched.gtail->schedlink = g; runtime_sched.gtail = g; // increment gwait. // if it transitions to nonzero, set atomic gwaiting bit. if(runtime_sched.gwait++ == 0) runtime_xadd(&runtime_sched.atomic, 1<idleg != nil; } // Get from `g' queue. Sched must be locked. static G* gget(void) { G *g; g = runtime_sched.ghead; if(g){ runtime_sched.ghead = g->schedlink; if(runtime_sched.ghead == nil) runtime_sched.gtail = nil; // decrement gwait. // if it transitions to zero, clear atomic gwaiting bit. if(--runtime_sched.gwait == 0) runtime_xadd(&runtime_sched.atomic, -1<idleg != nil) { g = m->idleg; m->idleg = nil; } return g; } // Put on `m' list. Sched must be locked. static void mput(M *m) { m->schedlink = runtime_sched.mhead; runtime_sched.mhead = m; runtime_sched.mwait++; } // Get an `m' to run `g'. Sched must be locked. static M* mget(G *g) { M *m; // if g has its own m, use it. if(g && (m = g->lockedm) != nil) return m; // otherwise use general m pool. if((m = runtime_sched.mhead) != nil){ runtime_sched.mhead = m->schedlink; runtime_sched.mwait--; } return m; } // Mark g ready to run. void runtime_ready(G *g) { schedlock(); readylocked(g); schedunlock(); } // Mark g ready to run. Sched is already locked. // G might be running already and about to stop. // The sched lock protects g->status from changing underfoot. static void readylocked(G *g) { if(g->m){ // Running on another machine. // Ready it when it stops. g->readyonstop = 1; return; } // Mark runnable. if(g->status == Grunnable || g->status == Grunning) { runtime_printf("goroutine %d has status %d\n", g->goid, g->status); runtime_throw("bad g->status in ready"); } g->status = Grunnable; gput(g); matchmg(); } // Same as readylocked but a different symbol so that // debuggers can set a breakpoint here and catch all // new goroutines. static void newprocreadylocked(G *g) { readylocked(g); } // Pass g to m for running. // Caller has already incremented mcpu. static void mnextg(M *m, G *g) { runtime_sched.grunning++; m->nextg = g; if(m->waitnextg) { m->waitnextg = 0; if(mwakeup != nil) runtime_notewakeup(&mwakeup->havenextg); mwakeup = m; } } // Get the next goroutine that m should run. // Sched must be locked on entry, is unlocked on exit. // Makes sure that at most $GOMAXPROCS g's are // running on cpus (not in system calls) at any given time. static G* nextgandunlock(void) { G *gp; uint32 v; top: if(atomic_mcpu(runtime_sched.atomic) >= maxgomaxprocs) runtime_throw("negative mcpu"); // If there is a g waiting as m->nextg, the mcpu++ // happened before it was passed to mnextg. if(m->nextg != nil) { gp = m->nextg; m->nextg = nil; schedunlock(); return gp; } if(m->lockedg != nil) { // We can only run one g, and it's not available. // Make sure some other cpu is running to handle // the ordinary run queue. if(runtime_sched.gwait != 0) { matchmg(); // m->lockedg might have been on the queue. if(m->nextg != nil) { gp = m->nextg; m->nextg = nil; schedunlock(); return gp; } } } else { // Look for work on global queue. while(haveg() && canaddmcpu()) { gp = gget(); if(gp == nil) runtime_throw("gget inconsistency"); if(gp->lockedm) { mnextg(gp->lockedm, gp); continue; } runtime_sched.grunning++; schedunlock(); return gp; } // The while loop ended either because the g queue is empty // or because we have maxed out our m procs running go // code (mcpu >= mcpumax). We need to check that // concurrent actions by entersyscall/exitsyscall cannot // invalidate the decision to end the loop. // // We hold the sched lock, so no one else is manipulating the // g queue or changing mcpumax. Entersyscall can decrement // mcpu, but if does so when there is something on the g queue, // the gwait bit will be set, so entersyscall will take the slow path // and use the sched lock. So it cannot invalidate our decision. // // Wait on global m queue. mput(m); } // Look for deadlock situation. if((scvg == nil && runtime_sched.grunning == 0) || (scvg != nil && runtime_sched.grunning == 1 && runtime_sched.gwait == 0 && (scvg->status == Grunning || scvg->status == Gsyscall))) { runtime_throw("all goroutines are asleep - deadlock!"); } m->nextg = nil; m->waitnextg = 1; runtime_noteclear(&m->havenextg); // Stoptheworld is waiting for all but its cpu to go to stop. // Entersyscall might have decremented mcpu too, but if so // it will see the waitstop and take the slow path. // Exitsyscall never increments mcpu beyond mcpumax. v = runtime_atomicload(&runtime_sched.atomic); if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) { // set waitstop = 0 (known to be 1) runtime_xadd(&runtime_sched.atomic, -1<havenextg); if(m->helpgc) { runtime_gchelper(); m->helpgc = 0; runtime_lock(&runtime_sched); goto top; } if((gp = m->nextg) == nil) runtime_throw("bad m->nextg in nextgoroutine"); m->nextg = nil; return gp; } int32 runtime_helpgc(bool *extra) { M *mp; int32 n, max; // Figure out how many CPUs to use. // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. max = runtime_gomaxprocs; if(max > runtime_ncpu) max = runtime_ncpu > 0 ? runtime_ncpu : 1; if(max > MaxGcproc) max = MaxGcproc; // We're going to use one CPU no matter what. // Figure out the max number of additional CPUs. max--; runtime_lock(&runtime_sched); n = 0; while(n < max && (mp = mget(nil)) != nil) { n++; mp->helpgc = 1; mp->waitnextg = 0; runtime_notewakeup(&mp->havenextg); } runtime_unlock(&runtime_sched); if(extra) *extra = n != max; return n; } void runtime_stoptheworld(void) { uint32 v; schedlock(); runtime_gcwaiting = 1; setmcpumax(1); // while mcpu > 1 for(;;) { v = runtime_sched.atomic; if(atomic_mcpu(v) <= 1) break; // It would be unsafe for multiple threads to be using // the stopped note at once, but there is only // ever one thread doing garbage collection. runtime_noteclear(&runtime_sched.stopped); if(atomic_waitstop(v)) runtime_throw("invalid waitstop"); // atomic { waitstop = 1 }, predicated on mcpu <= 1 check above // still being true. if(!runtime_cas(&runtime_sched.atomic, v, v+(1<helpgc = 1; runtime_sched.grunning++; } schedunlock(); } // Called to start an M. void* runtime_mstart(void* mp) { m = (M*)mp; g = m->g0; initcontext(); g->entry = nil; g->param = nil; // Record top of stack for use by mcall. // Once we call schedule we're never coming back, // so other calls can reuse this stack space. #ifdef USING_SPLIT_STACK __splitstack_getcontext(&g->stack_context[0]); #else g->gcinitial_sp = ∓ // Setting gcstack_size to 0 is a marker meaning that gcinitial_sp // is the top of the stack, not the bottom. g->gcstack_size = 0; g->gcnext_sp = ∓ #endif getcontext(&g->context); if(g->entry != nil) { // Got here from mcall. void (*pfn)(G*) = (void (*)(G*))g->entry; G* gp = (G*)g->param; pfn(gp); *(int*)0x21 = 0x21; } runtime_minit(); #ifdef USING_SPLIT_STACK { int dont_block_signals = 0; __splitstack_block_signals(&dont_block_signals, nil); } #endif schedule(nil); return nil; } typedef struct CgoThreadStart CgoThreadStart; struct CgoThreadStart { M *m; G *g; void (*fn)(void); }; // Kick off new m's as needed (up to mcpumax). // Sched is locked. static void matchmg(void) { G *gp; M *mp; if(m->mallocing || m->gcing) return; while(haveg() && canaddmcpu()) { gp = gget(); if(gp == nil) runtime_throw("gget inconsistency"); // Find the m that will run gp. if((mp = mget(gp)) == nil) mp = runtime_newm(); mnextg(mp, gp); } } // Create a new m. It will start off with a call to runtime_mstart. M* runtime_newm(void) { M *m; pthread_attr_t attr; pthread_t tid; m = runtime_malloc(sizeof(M)); mcommoninit(m); m->g0 = runtime_malg(-1, nil, nil); if(pthread_attr_init(&attr) != 0) runtime_throw("pthread_attr_init"); if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) runtime_throw("pthread_attr_setdetachstate"); #ifndef PTHREAD_STACK_MIN #define PTHREAD_STACK_MIN 8192 #endif if(pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN) != 0) runtime_throw("pthread_attr_setstacksize"); if(pthread_create(&tid, &attr, runtime_mstart, m) != 0) runtime_throw("pthread_create"); return m; } // One round of scheduler: find a goroutine and run it. // The argument is the goroutine that was running before // schedule was called, or nil if this is the first call. // Never returns. static void schedule(G *gp) { int32 hz; uint32 v; schedlock(); if(gp != nil) { // Just finished running gp. gp->m = nil; runtime_sched.grunning--; // atomic { mcpu-- } v = runtime_xadd(&runtime_sched.atomic, -1< maxgomaxprocs) runtime_throw("negative mcpu in scheduler"); switch(gp->status){ case Grunnable: case Gdead: // Shouldn't have been running! runtime_throw("bad gp->status in sched"); case Grunning: gp->status = Grunnable; gput(gp); break; case Gmoribund: gp->status = Gdead; if(gp->lockedm) { gp->lockedm = nil; m->lockedg = nil; } gp->idlem = nil; gfput(gp); if(--runtime_sched.gcount == 0) runtime_exit(0); break; } if(gp->readyonstop){ gp->readyonstop = 0; readylocked(gp); } } else if(m->helpgc) { // Bootstrap m or new m started by starttheworld. // atomic { mcpu-- } v = runtime_xadd(&runtime_sched.atomic, -1< maxgomaxprocs) runtime_throw("negative mcpu in scheduler"); // Compensate for increment in starttheworld(). runtime_sched.grunning--; m->helpgc = 0; } else if(m->nextg != nil) { // New m started by matchmg. } else { runtime_throw("invalid m state in scheduler"); } // Find (or wait for) g to run. Unlocks runtime_sched. gp = nextgandunlock(); gp->readyonstop = 0; gp->status = Grunning; m->curg = gp; gp->m = m; // Check whether the profiler needs to be turned on or off. hz = runtime_sched.profilehz; if(m->profilehz != hz) runtime_resetcpuprofiler(hz); runtime_gogo(gp); } // Enter scheduler. If g->status is Grunning, // re-queues g and runs everyone else who is waiting // before running g again. If g->status is Gmoribund, // kills off g. void runtime_gosched(void) { if(m->locks != 0) runtime_throw("gosched holding locks"); if(g == m->g0) runtime_throw("gosched of g0"); runtime_mcall(schedule); } // The goroutine g is about to enter a system call. // Record that it's not using the cpu anymore. // This is called only from the go syscall library and cgocall, // not from the low-level system calls used by the runtime. // // Entersyscall cannot split the stack: the runtime_gosave must // make g->sched refer to the caller's stack segment, because // entersyscall is going to return immediately after. // It's okay to call matchmg and notewakeup even after // decrementing mcpu, because we haven't released the // sched lock yet, so the garbage collector cannot be running. void runtime_entersyscall(void) __attribute__ ((no_split_stack)); void runtime_entersyscall(void) { uint32 v; if(m->profilehz > 0) runtime_setprof(false); // Leave SP around for gc and traceback. #ifdef USING_SPLIT_STACK g->gcstack = __splitstack_find(NULL, NULL, &g->gcstack_size, &g->gcnext_segment, &g->gcnext_sp, &g->gcinitial_sp); #else g->gcnext_sp = (byte *) &v; #endif // Save the registers in the g structure so that any pointers // held in registers will be seen by the garbage collector. // We could use getcontext here, but setjmp is more efficient // because it doesn't need to save the signal mask. setjmp(g->gcregs); g->status = Gsyscall; // Fast path. // The slow path inside the schedlock/schedunlock will get // through without stopping if it does: // mcpu-- // gwait not true // waitstop && mcpu <= mcpumax not true // If we can do the same with a single atomic add, // then we can skip the locks. v = runtime_xadd(&runtime_sched.atomic, -1< atomic_mcpumax(v))) return; schedlock(); v = runtime_atomicload(&runtime_sched.atomic); if(atomic_gwaiting(v)) { matchmg(); v = runtime_atomicload(&runtime_sched.atomic); } if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) { runtime_xadd(&runtime_sched.atomic, -1<profilehz == runtime_sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) { // There's a cpu for us, so we can run. gp->status = Grunning; // Garbage collector isn't running (since we are), // so okay to clear gcstack. #ifdef USING_SPLIT_STACK gp->gcstack = nil; #endif gp->gcnext_sp = nil; runtime_memclr(gp->gcregs, sizeof gp->gcregs); if(m->profilehz > 0) runtime_setprof(true); return; } // Tell scheduler to put g back on the run queue: // mostly equivalent to g->status = Grunning, // but keeps the garbage collector from thinking // that g is running right now, which it's not. gp->readyonstop = 1; // All the cpus are taken. // The scheduler will ready g and put this m to sleep. // When the scheduler takes g away from m, // it will undo the runtime_sched.mcpu++ above. runtime_gosched(); // Gosched returned, so we're allowed to run now. // Delete the gcstack information that we left for // the garbage collector during the system call. // Must wait until now because until gosched returns // we don't know for sure that the garbage collector // is not running. #ifdef USING_SPLIT_STACK gp->gcstack = nil; #endif gp->gcnext_sp = nil; runtime_memclr(gp->gcregs, sizeof gp->gcregs); } // Allocate a new g, with a stack big enough for stacksize bytes. G* runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize) { G *newg; newg = runtime_malloc(sizeof(G)); if(stacksize >= 0) { #if USING_SPLIT_STACK int dont_block_signals = 0; *ret_stack = __splitstack_makecontext(stacksize, &newg->stack_context[0], ret_stacksize); __splitstack_block_signals_context(&newg->stack_context[0], &dont_block_signals, nil); #else *ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0); *ret_stacksize = stacksize; newg->gcinitial_sp = *ret_stack; newg->gcstack_size = stacksize; #endif } return newg; } /* For runtime package testing. */ void runtime_testing_entersyscall(void) __asm__("libgo_runtime.runtime.entersyscall"); void runtime_testing_entersyscall() { runtime_entersyscall(); } void runtime_testing_exitsyscall(void) __asm__("libgo_runtime.runtime.exitsyscall"); void runtime_testing_exitsyscall() { runtime_exitsyscall(); } G* __go_go(void (*fn)(void*), void* arg) { byte *sp; size_t spsize; G * volatile newg; // volatile to avoid longjmp warning schedlock(); if((newg = gfget()) != nil){ #ifdef USING_SPLIT_STACK int dont_block_signals = 0; sp = __splitstack_resetcontext(&newg->stack_context[0], &spsize); __splitstack_block_signals_context(&newg->stack_context[0], &dont_block_signals, nil); #else sp = newg->gcinitial_sp; spsize = newg->gcstack_size; if(spsize == 0) runtime_throw("bad spsize in __go_go"); newg->gcnext_sp = sp; #endif } else { newg = runtime_malg(StackMin, &sp, &spsize); if(runtime_lastg == nil) runtime_allg = newg; else runtime_lastg->alllink = newg; runtime_lastg = newg; } newg->status = Gwaiting; newg->waitreason = "new goroutine"; newg->entry = (byte*)fn; newg->param = arg; newg->gopc = (uintptr)__builtin_return_address(0); runtime_sched.gcount++; runtime_sched.goidgen++; newg->goid = runtime_sched.goidgen; if(sp == nil) runtime_throw("nil g->stack0"); getcontext(&newg->context); newg->context.uc_stack.ss_sp = sp; #ifdef MAKECONTEXT_STACK_TOP newg->context.uc_stack.ss_sp += spsize; #endif newg->context.uc_stack.ss_size = spsize; makecontext(&newg->context, kickoff, 0); newprocreadylocked(newg); schedunlock(); return newg; //printf(" goid=%d\n", newg->goid); } // Put on gfree list. Sched must be locked. static void gfput(G *g) { g->schedlink = runtime_sched.gfree; runtime_sched.gfree = g; } // Get from gfree list. Sched must be locked. static G* gfget(void) { G *g; g = runtime_sched.gfree; if(g) runtime_sched.gfree = g->schedlink; return g; } // Run all deferred functions for the current goroutine. static void rundefer(void) { Defer *d; while((d = g->defer) != nil) { void (*pfn)(void*); pfn = d->__pfn; d->__pfn = nil; if (pfn != nil) (*pfn)(d->__arg); g->defer = d->__next; runtime_free(d); } } void runtime_Goexit (void) asm ("libgo_runtime.runtime.Goexit"); void runtime_Goexit(void) { rundefer(); runtime_goexit(); } void runtime_Gosched (void) asm ("libgo_runtime.runtime.Gosched"); void runtime_Gosched(void) { runtime_gosched(); } // Implementation of runtime.GOMAXPROCS. // delete when scheduler is stronger int32 runtime_gomaxprocsfunc(int32 n) { int32 ret; uint32 v; schedlock(); ret = runtime_gomaxprocs; if(n <= 0) n = ret; if(n > maxgomaxprocs) n = maxgomaxprocs; runtime_gomaxprocs = n; if(runtime_gomaxprocs > 1) runtime_singleproc = false; if(runtime_gcwaiting != 0) { if(atomic_mcpumax(runtime_sched.atomic) != 1) runtime_throw("invalid mcpumax during gc"); schedunlock(); return ret; } setmcpumax(n); // If there are now fewer allowed procs // than procs running, stop. v = runtime_atomicload(&runtime_sched.atomic); if((int32)atomic_mcpu(v) > n) { schedunlock(); runtime_gosched(); return ret; } // handle more procs matchmg(); schedunlock(); return ret; } void runtime_LockOSThread(void) { if(m == &runtime_m0 && runtime_sched.init) { runtime_sched.lockmain = true; return; } m->lockedg = g; g->lockedm = m; } void runtime_UnlockOSThread(void) { if(m == &runtime_m0 && runtime_sched.init) { runtime_sched.lockmain = false; return; } m->lockedg = nil; g->lockedm = nil; } bool runtime_lockedOSThread(void) { return g->lockedm != nil && m->lockedg != nil; } // for testing of callbacks _Bool runtime_golockedOSThread(void) asm("libgo_runtime.runtime.golockedOSThread"); _Bool runtime_golockedOSThread(void) { return runtime_lockedOSThread(); } // for testing of wire, unwire uint32 runtime_mid() { return m->id; } int32 runtime_NumGoroutine (void) __asm__ ("libgo_runtime.runtime.NumGoroutine"); int32 runtime_NumGoroutine() { return runtime_sched.gcount; } int32 runtime_gcount(void) { return runtime_sched.gcount; } int32 runtime_mcount(void) { return runtime_sched.mcount; } static struct { Lock; void (*fn)(uintptr*, int32); int32 hz; uintptr pcbuf[100]; } prof; // Called if we receive a SIGPROF signal. void runtime_sigprof(uint8 *pc __attribute__ ((unused)), uint8 *sp __attribute__ ((unused)), uint8 *lr __attribute__ ((unused)), G *gp __attribute__ ((unused))) { // int32 n; if(prof.fn == nil || prof.hz == 0) return; runtime_lock(&prof); if(prof.fn == nil) { runtime_unlock(&prof); return; } // n = runtime_gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf)); // if(n > 0) // prof.fn(prof.pcbuf, n); runtime_unlock(&prof); } // Arrange to call fn with a traceback hz times a second. void runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz) { // Force sane arguments. if(hz < 0) hz = 0; if(hz == 0) fn = nil; if(fn == nil) hz = 0; // Stop profiler on this cpu so that it is safe to lock prof. // if a profiling signal came in while we had prof locked, // it would deadlock. runtime_resetcpuprofiler(0); runtime_lock(&prof); prof.fn = fn; prof.hz = hz; runtime_unlock(&prof); runtime_lock(&runtime_sched); runtime_sched.profilehz = hz; runtime_unlock(&runtime_sched); if(hz != 0) runtime_resetcpuprofiler(hz); }