Panand | ania

uClinux - BFLT Binary Flat Format

uClinux uses a Binary Flat format commonly known as BFLT. ltis a relatively simple and ligh
executable format based on the original a.out format. It has seen two major revisions, versio
more recently version 4. Version 2 is used by the m68k-coff compilers and is still in use with
elf2fit converter while version 4 is used with the m68k elf2flt converter. Like many open sourc
projects worked on by many individuals, little features have creped into versions without the |
field changing. As a consequence what we detail in each version may not strictly be the case
circumstances. Both the 2.0.x and 2.4.x kernels’ bFLT loaders in the CVS support both form
Earlier kernels may need to have binfmt_flat.c and flat.c patched to support version 4, shoulc
4 binaries report the following message when loading

bFLT:not found.
bad magic/rev(4,need 2)

Each flat binary is preceded by a header of the structure shown below in
listing 1. It starts with 4 ASCIl bytes, “bFLT” or 0x62, 0x46, 0x4C, 0x54

which identifies the binary as conforming to the flat format. The next field 1
designates the version number of the flat header. As mentioned there —

ant
are two major versions, version 2 and version 4. Each version differs by "
the supported flags and the format of the relocations. e
The next group of fields in the header specify the starting address of data_start

each segment relative to the start of the flat file. Most files start the .text

segment at 0x40 (immediately after the end of the header). The

data_start, data_end and bss_end fields specify the start or finish of the | :::;:;d
designated segments. With the absence of text_end and bss_start -
fields, it is assumed that the text segment comes first, followed

immediately by the data segment. While the comments for the flat file —
header would suggest there is a bss segment somewhere in the flat file, Figure 1 : Flat Fil
this is not true. bss_end is used to represent the length of the bss

segment, thus should be set to data_end + size of bss.

.da

Reloc

struct flat_hdr {
char magic[4];

unsigned long rev; /* version */

unsigned long entry; /* O0ffset of first executable instruct
with text segment from beginning of

unsigned long data_start; /* 0ffset of data segment from beginn:
file */

unsigned long data_end; /* 0ffset of end of data segment
from beginning of file */

unsigned long bss_end; /* 0ffset of end of bss segment from t
of file */

/* (It is assumed that data_end through bss_end forms the bss segn

unsigned long stack_size; /* Size of stack, in bytes */

unsigned long reloc_start; /* Offset of relocation records from
beginning of file */

unsigned long reloc_count; /* Number of relocation records */

unsigned long flags;

unsigned long filler[6]; /* Reserved, set to zero */

};
Listing 1 : The bFLT header structure extracted from flat.h

Following the segments’ start and end pointers comes the stack size field specified in bytes
normally set to 4096 by the m68k bFLT converters and can be changed by passing an argur
to the elf2filt / coff2flt utility.

The next two fields specify the details of the relocations. Each relocation is a long (32 bits) w
relocation table following the data segment in the flat binary file. The relocation entries are di
per bFLT version.

Version 2 specified a 2 bit type and 30 bit offset per relocation. This causes a headache wit
endianess problems. The 30 bit relocation is a pointer relative to zero where an absolute ad

e a0 M ot Nt _a oMo _aho_oaho 0o W NN _tia_ a_ a__a N_a_ o A __

ORI YN

uSea. 1ne type inaicates wnemer e apsSolute aaaress points 10 .1ext, .aata or .oss.

#define FLAT_RELOC_TYPE_TEXT 0
#define FLAT_RELOC_TYPE_DATA 1
#define FLAT_RELOC_TYPE_BSS 2

struct flat_reloc {
#if defined(__BIG_ENDIAN_BITFIELD) /* bit fields, ugh ! */
unsigned long type : 2;
signed long offset : 30;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
signed long offset : 30;
unsigned long type : 2;
#endif

Listing 2 : Version 2 relocation structures - Not for use in newcode.

This enables the flat loader to fix-up absolute addressing at runtime by jumping to the absolt
address specified by the relocation entry and adding the loaded base address to the existin
address.

Version 4 removed the need of specifying a relocation type. Each relocation entry simply co
pointer to an absolute address in need of fix-up. As the bFLT loader can determine the lengt
.text segment at runtime (data_start - entry) we can use this to determine what segment the r
is for. If the absolute address before fix-up is less that the text length, we can safety assume
relocation is pointing to the text segment and this add the base address of this segment to tl
absolute address.

On the other hand if the absolute address before fix-up is greater than the text length, then th
absolute address must be pointing to .data or .bss. As .bss always immediately follows the ¢
segment there is no need to have a distinction, we just add the base address of the data se(
and subtract the length of the text segment. We subtract the text segment as the absolute ad
version 4 is relative to zero and not to the start of the data segment.

Now you could say we may take it one step further. As every absolute address is referenced
we can simply add the base address of the text segment to each address needing fix-up. Th
be true if the data segment immediately follows the text segment, but we now have complica
msep-data where the text segment can be in ROM and the data segment in another location
Therefore we can no longer assume that the .data+.bss segment and text segment will imme
follow each other.

The last defined field in the header is the flags. This appeared briefly in some version 2 heau
(Typically ARM) but was cemented in place with version 4. The flags are defined as follows

#define FLAT_FLAG_RAM 0x0001 /* load program entirely into RAM */
#define FLAT_FLAG_GOTPIC 0x0002 /* program is PIC with GOT */
#define FLAT_FLAG_GZIP 0x0004 /* all but the header is compressed */

Listing 3 : Newflags defined in Version 4

Early version 2 binaries saw both the .text and .data segments loaded into RAM regardless.
(eXecute in Place) was later introduced allowing programs to execute from ROM with only tt
segment being copied into RAM. In version 4, it is now assumed that each binary is loaded 1
ROM if GOTPIC is true and FLAT_FLAG_GZIP and FLAT_FLAG_RAM is false. A binary c¢
forced to load into RAM by forcing the FLAT_FLAG_RAM flag.

The FLAT_FLAG_GOTPIC informs the loader that a GOT (Global Offset Table) is present a
of the data segment. This table includes offsets that need to be relocated at runtime and thus
XIP to work. (Data is accessed through the GOT, thus relocations need not be made to the .
residing in ROM.) The GOT is terminated with a -1, followed immediately by the data segme

The FLAT_FLAG_GZIP indicates the binary is compressed with the GZIP algorithm. The he
left untouched, but the .text, .data and relocations are compressed. Some bFLT loaders do 1
support GZIP and will report an error at loading.

Acknowledgments to Pauli from Lineo for pointing out some minor errors.

Copyright 2001-2005 Craig Peacock - 15th June 2005.

