/* 32 and 64-bit millicode, original author Hewlett-Packard adapted for gcc by Paul Bame and Alan Modra . Copyright (C) 2001-2016 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #ifdef pa64 .level 2.0w #endif /* Hardware General Registers. */ r0: .reg %r0 r1: .reg %r1 r2: .reg %r2 r3: .reg %r3 r4: .reg %r4 r5: .reg %r5 r6: .reg %r6 r7: .reg %r7 r8: .reg %r8 r9: .reg %r9 r10: .reg %r10 r11: .reg %r11 r12: .reg %r12 r13: .reg %r13 r14: .reg %r14 r15: .reg %r15 r16: .reg %r16 r17: .reg %r17 r18: .reg %r18 r19: .reg %r19 r20: .reg %r20 r21: .reg %r21 r22: .reg %r22 r23: .reg %r23 r24: .reg %r24 r25: .reg %r25 r26: .reg %r26 r27: .reg %r27 r28: .reg %r28 r29: .reg %r29 r30: .reg %r30 r31: .reg %r31 /* Hardware Space Registers. */ sr0: .reg %sr0 sr1: .reg %sr1 sr2: .reg %sr2 sr3: .reg %sr3 sr4: .reg %sr4 sr5: .reg %sr5 sr6: .reg %sr6 sr7: .reg %sr7 /* Hardware Floating Point Registers. */ fr0: .reg %fr0 fr1: .reg %fr1 fr2: .reg %fr2 fr3: .reg %fr3 fr4: .reg %fr4 fr5: .reg %fr5 fr6: .reg %fr6 fr7: .reg %fr7 fr8: .reg %fr8 fr9: .reg %fr9 fr10: .reg %fr10 fr11: .reg %fr11 fr12: .reg %fr12 fr13: .reg %fr13 fr14: .reg %fr14 fr15: .reg %fr15 /* Hardware Control Registers. */ cr11: .reg %cr11 sar: .reg %cr11 /* Shift Amount Register */ /* Software Architecture General Registers. */ rp: .reg r2 /* return pointer */ #ifdef pa64 mrp: .reg r2 /* millicode return pointer */ #else mrp: .reg r31 /* millicode return pointer */ #endif ret0: .reg r28 /* return value */ ret1: .reg r29 /* return value (high part of double) */ sp: .reg r30 /* stack pointer */ dp: .reg r27 /* data pointer */ arg0: .reg r26 /* argument */ arg1: .reg r25 /* argument or high part of double argument */ arg2: .reg r24 /* argument */ arg3: .reg r23 /* argument or high part of double argument */ /* Software Architecture Space Registers. */ /* sr0 ; return link from BLE */ sret: .reg sr1 /* return value */ sarg: .reg sr1 /* argument */ /* sr4 ; PC SPACE tracker */ /* sr5 ; process private data */ /* Frame Offsets (millicode convention!) Used when calling other millicode routines. Stack unwinding is dependent upon these definitions. */ r31_slot: .equ -20 /* "current RP" slot */ sr0_slot: .equ -16 /* "static link" slot */ #if defined(pa64) mrp_slot: .equ -16 /* "current RP" slot */ psp_slot: .equ -8 /* "previous SP" slot */ #else mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */ #endif #define DEFINE(name,value)name: .EQU value #define RDEFINE(name,value)name: .REG value #ifdef milliext #define MILLI_BE(lbl) BE lbl(sr7,r0) #define MILLI_BEN(lbl) BE,n lbl(sr7,r0) #define MILLI_BLE(lbl) BLE lbl(sr7,r0) #define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0) #define MILLIRETN BE,n 0(sr0,mrp) #define MILLIRET BE 0(sr0,mrp) #define MILLI_RETN BE,n 0(sr0,mrp) #define MILLI_RET BE 0(sr0,mrp) #else #define MILLI_BE(lbl) B lbl #define MILLI_BEN(lbl) B,n lbl #define MILLI_BLE(lbl) BL lbl,mrp #define MILLI_BLEN(lbl) BL,n lbl,mrp #define MILLIRETN BV,n 0(mrp) #define MILLIRET BV 0(mrp) #define MILLI_RETN BV,n 0(mrp) #define MILLI_RET BV 0(mrp) #endif #ifdef __STDC__ #define CAT(a,b) a##b #else #define CAT(a,b) a/**/b #endif #ifdef ELF #define SUBSPA_MILLI .section .text #define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16 #define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16 #define ATTR_MILLI #define SUBSPA_DATA .section .data #define ATTR_DATA #define GLOBAL $global$ #define GSYM(sym) !sym: #define LSYM(sym) !CAT(.L,sym:) #define LREF(sym) CAT(.L,sym) #else #ifdef coff /* This used to be .milli but since link32 places different named sections in different segments millicode ends up a long ways away from .text (1meg?). This way they will be a lot closer. The SUBSPA_MILLI_* specify locality sets for certain millicode modules in order to ensure that modules that call one another are placed close together. Without locality sets this is unlikely to happen because of the Dynamite linker library search algorithm. We want these modules close together so that short calls always reach (we don't want to require long calls or use long call stubs). */ #define SUBSPA_MILLI .subspa .text #define SUBSPA_MILLI_DIV .subspa .text$dv,align=16 #define SUBSPA_MILLI_MUL .subspa .text$mu,align=16 #define ATTR_MILLI .attr code,read,execute #define SUBSPA_DATA .subspa .data #define ATTR_DATA .attr init_data,read,write #define GLOBAL _gp #else #define SUBSPA_MILLI .subspa $MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=8 #define SUBSPA_MILLI_DIV SUBSPA_MILLI #define SUBSPA_MILLI_MUL SUBSPA_MILLI #define ATTR_MILLI #define SUBSPA_DATA .subspa $BSS$,quad=1,align=8,access=0x1f,sort=80,zero #define ATTR_DATA #define GLOBAL $global$ #endif #define SPACE_DATA .space $PRIVATE$,spnum=1,sort=16 #define GSYM(sym) !sym #define LSYM(sym) !CAT(L$,sym) #define LREF(sym) CAT(L$,sym) #endif #ifdef L_dyncall SUBSPA_MILLI ATTR_DATA GSYM($$dyncall) .export $$dyncall,millicode .proc .callinfo millicode .entry bb,>=,n %r22,30,LREF(1) ; branch if not plabel address depi 0,31,2,%r22 ; clear the two least significant bits ldw 4(%r22),%r19 ; load new LTP value ldw 0(%r22),%r22 ; load address of target LSYM(1) #ifdef LINUX bv %r0(%r22) ; branch to the real target #else ldsid (%sr0,%r22),%r1 ; get the "space ident" selected by r22 mtsp %r1,%sr0 ; move that space identifier into sr0 be 0(%sr0,%r22) ; branch to the real target #endif stw %r2,-24(%r30) ; save return address into frame marker .exit .procend #endif #ifdef L_divI /* ROUTINES: $$divI, $$divoI Single precision divide for signed binary integers. The quotient is truncated towards zero. The sign of the quotient is the XOR of the signs of the dividend and divisor. Divide by zero is trapped. Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI. INPUT REGISTERS: . arg0 == dividend . arg1 == divisor . mrp == return pc . sr0 == return space when called externally OUTPUT REGISTERS: . arg0 = undefined . arg1 = undefined . ret1 = quotient OTHER REGISTERS AFFECTED: . r1 = undefined SIDE EFFECTS: . Causes a trap under the following conditions: . divisor is zero (traps with ADDIT,= 0,25,0) . dividend==-2**31 and divisor==-1 and routine is $$divoI . (traps with ADDO 26,25,0) . Changes memory at the following places: . NONE PERMISSIBLE CONTEXT: . Unwindable. . Suitable for internal or external millicode. . Assumes the special millicode register conventions. DISCUSSION: . Branchs to other millicode routines using BE . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15 . . For selected divisors, calls a divide by constant routine written by . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13. . . The only overflow case is -2**31 divided by -1. . Both routines return -2**31 but only $$divoI traps. */ RDEFINE(temp,r1) RDEFINE(retreg,ret1) /* r29 */ RDEFINE(temp1,arg0) SUBSPA_MILLI_DIV ATTR_MILLI .import $$divI_2,millicode .import $$divI_3,millicode .import $$divI_4,millicode .import $$divI_5,millicode .import $$divI_6,millicode .import $$divI_7,millicode .import $$divI_8,millicode .import $$divI_9,millicode .import $$divI_10,millicode .import $$divI_12,millicode .import $$divI_14,millicode .import $$divI_15,millicode .export $$divI,millicode .export $$divoI,millicode .proc .callinfo millicode .entry GSYM($$divoI) comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */ GSYM($$divI) ldo -1(arg1),temp /* is there at most one bit set ? */ and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */ addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */ b,n LREF(neg_denom) LSYM(pow2) addi,>= 0,arg0,retreg /* if numerator is negative, add the */ add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */ extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ extrs retreg,15,16,retreg /* retreg = retreg >> 16 */ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ ldi 0xcc,temp1 /* setup 0xcc in temp1 */ extru,= arg1,23,8,temp /* test denominator with 0xff00 */ extrs retreg,23,24,retreg /* retreg = retreg >> 8 */ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ ldi 0xaa,temp /* setup 0xaa in temp */ extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ extrs retreg,27,28,retreg /* retreg = retreg >> 4 */ and,= arg1,temp1,r0 /* test denominator with 0xcc */ extrs retreg,29,30,retreg /* retreg = retreg >> 2 */ and,= arg1,temp,r0 /* test denominator with 0xaa */ extrs retreg,30,31,retreg /* retreg = retreg >> 1 */ MILLIRETN LSYM(neg_denom) addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */ b,n LREF(regular_seq) sub r0,arg1,temp /* make denominator positive */ comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */ ldo -1(temp),retreg /* is there at most one bit set ? */ and,= temp,retreg,r0 /* if so, the denominator is power of 2 */ b,n LREF(regular_seq) sub r0,arg0,retreg /* negate numerator */ comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */ copy retreg,arg0 /* set up arg0, arg1 and temp */ copy temp,arg1 /* before branching to pow2 */ b LREF(pow2) ldo -1(arg1),temp LSYM(regular_seq) comib,>>=,n 15,arg1,LREF(small_divisor) add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ LSYM(normal) subi 0,retreg,retreg /* make it positive */ sub 0,arg1,temp /* clear carry, */ /* negate the divisor */ ds 0,temp,0 /* set V-bit to the comple- */ /* ment of the divisor sign */ add retreg,retreg,retreg /* shift msb bit into carry */ ds r0,arg1,temp /* 1st divide step, if no carry */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 2nd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 3rd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 4th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 5th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 6th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 7th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 8th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 9th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 10th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 11th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 12th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 13th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 14th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 15th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 16th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 17th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 18th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 19th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 20th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 21st divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 22nd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 23rd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 24th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 25th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 26th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 27th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 28th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 29th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 30th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 31st divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 32nd divide step, */ addc retreg,retreg,retreg /* shift last retreg bit into retreg */ xor,>= arg0,arg1,0 /* get correct sign of quotient */ sub 0,retreg,retreg /* based on operand signs */ MILLIRETN nop LSYM(small_divisor) #if defined(pa64) /* Clear the upper 32 bits of the arg1 register. We are working with */ /* small divisors (and 32-bit integers) We must not be mislead */ /* by "1" bits left in the upper 32 bits. */ depd %r0,31,32,%r25 #endif blr,n arg1,r0 nop /* table for divisor == 0,1, ... ,15 */ addit,= 0,arg1,r0 /* trap if divisor == 0 */ nop MILLIRET /* divisor == 1 */ copy arg0,retreg MILLI_BEN($$divI_2) /* divisor == 2 */ nop MILLI_BEN($$divI_3) /* divisor == 3 */ nop MILLI_BEN($$divI_4) /* divisor == 4 */ nop MILLI_BEN($$divI_5) /* divisor == 5 */ nop MILLI_BEN($$divI_6) /* divisor == 6 */ nop MILLI_BEN($$divI_7) /* divisor == 7 */ nop MILLI_BEN($$divI_8) /* divisor == 8 */ nop MILLI_BEN($$divI_9) /* divisor == 9 */ nop MILLI_BEN($$divI_10) /* divisor == 10 */ nop b LREF(normal) /* divisor == 11 */ add,>= 0,arg0,retreg MILLI_BEN($$divI_12) /* divisor == 12 */ nop b LREF(normal) /* divisor == 13 */ add,>= 0,arg0,retreg MILLI_BEN($$divI_14) /* divisor == 14 */ nop MILLI_BEN($$divI_15) /* divisor == 15 */ nop LSYM(negative1) sub 0,arg0,retreg /* result is negation of dividend */ MILLIRET addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */ .exit .procend .end #endif #ifdef L_divU /* ROUTINE: $$divU . . Single precision divide for unsigned integers. . . Quotient is truncated towards zero. . Traps on divide by zero. INPUT REGISTERS: . arg0 == dividend . arg1 == divisor . mrp == return pc . sr0 == return space when called externally OUTPUT REGISTERS: . arg0 = undefined . arg1 = undefined . ret1 = quotient OTHER REGISTERS AFFECTED: . r1 = undefined SIDE EFFECTS: . Causes a trap under the following conditions: . divisor is zero . Changes memory at the following places: . NONE PERMISSIBLE CONTEXT: . Unwindable. . Does not create a stack frame. . Suitable for internal or external millicode. . Assumes the special millicode register conventions. DISCUSSION: . Branchs to other millicode routines using BE: . $$divU_# for 3,5,6,7,9,10,12,14,15 . . For selected small divisors calls the special divide by constant . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */ RDEFINE(temp,r1) RDEFINE(retreg,ret1) /* r29 */ RDEFINE(temp1,arg0) SUBSPA_MILLI_DIV ATTR_MILLI .export $$divU,millicode .import $$divU_3,millicode .import $$divU_5,millicode .import $$divU_6,millicode .import $$divU_7,millicode .import $$divU_9,millicode .import $$divU_10,millicode .import $$divU_12,millicode .import $$divU_14,millicode .import $$divU_15,millicode .proc .callinfo millicode .entry GSYM($$divU) /* The subtract is not nullified since it does no harm and can be used by the two cases that branch back to "normal". */ ldo -1(arg1),temp /* is there at most one bit set ? */ and,= arg1,temp,r0 /* if so, denominator is power of 2 */ b LREF(regular_seq) addit,= 0,arg1,0 /* trap for zero dvr */ copy arg0,retreg extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ extru retreg,15,16,retreg /* retreg = retreg >> 16 */ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ ldi 0xcc,temp1 /* setup 0xcc in temp1 */ extru,= arg1,23,8,temp /* test denominator with 0xff00 */ extru retreg,23,24,retreg /* retreg = retreg >> 8 */ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ ldi 0xaa,temp /* setup 0xaa in temp */ extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ extru retreg,27,28,retreg /* retreg = retreg >> 4 */ and,= arg1,temp1,r0 /* test denominator with 0xcc */ extru retreg,29,30,retreg /* retreg = retreg >> 2 */ and,= arg1,temp,r0 /* test denominator with 0xaa */ extru retreg,30,31,retreg /* retreg = retreg >> 1 */ MILLIRETN nop LSYM(regular_seq) comib,>= 15,arg1,LREF(special_divisor) subi 0,arg1,temp /* clear carry, negate the divisor */ ds r0,temp,r0 /* set V-bit to 1 */ LSYM(normal) add arg0,arg0,retreg /* shift msb bit into carry */ ds r0,arg1,temp /* 1st divide step, if no carry */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 2nd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 3rd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 4th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 5th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 6th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 7th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 8th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 9th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 10th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 11th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 12th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 13th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 14th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 15th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 16th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 17th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 18th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 19th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 20th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 21st divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 22nd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 23rd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 24th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 25th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 26th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 27th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 28th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 29th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 30th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 31st divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds temp,arg1,temp /* 32nd divide step, */ MILLIRET addc retreg,retreg,retreg /* shift last retreg bit into retreg */ /* Handle the cases where divisor is a small constant or has high bit on. */ LSYM(special_divisor) /* blr arg1,r0 */ /* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */ /* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from generating such a blr, comib sequence. A problem in nullification. So I rewrote this code. */ #if defined(pa64) /* Clear the upper 32 bits of the arg1 register. We are working with small divisors (and 32-bit unsigned integers) We must not be mislead by "1" bits left in the upper 32 bits. */ depd %r0,31,32,%r25 #endif comib,> 0,arg1,LREF(big_divisor) nop blr arg1,r0 nop LSYM(zero_divisor) /* this label is here to provide external visibility */ addit,= 0,arg1,0 /* trap for zero dvr */ nop MILLIRET /* divisor == 1 */ copy arg0,retreg MILLIRET /* divisor == 2 */ extru arg0,30,31,retreg MILLI_BEN($$divU_3) /* divisor == 3 */ nop MILLIRET /* divisor == 4 */ extru arg0,29,30,retreg MILLI_BEN($$divU_5) /* divisor == 5 */ nop MILLI_BEN($$divU_6) /* divisor == 6 */ nop MILLI_BEN($$divU_7) /* divisor == 7 */ nop MILLIRET /* divisor == 8 */ extru arg0,28,29,retreg MILLI_BEN($$divU_9) /* divisor == 9 */ nop MILLI_BEN($$divU_10) /* divisor == 10 */ nop b LREF(normal) /* divisor == 11 */ ds r0,temp,r0 /* set V-bit to 1 */ MILLI_BEN($$divU_12) /* divisor == 12 */ nop b LREF(normal) /* divisor == 13 */ ds r0,temp,r0 /* set V-bit to 1 */ MILLI_BEN($$divU_14) /* divisor == 14 */ nop MILLI_BEN($$divU_15) /* divisor == 15 */ nop /* Handle the case where the high bit is on in the divisor. Compute: if( dividend>=divisor) quotient=1; else quotient=0; Note: dividend>==divisor iff dividend-divisor does not borrow and not borrow iff carry. */ LSYM(big_divisor) sub arg0,arg1,r0 MILLIRET addc r0,r0,retreg .exit .procend .end #endif #ifdef L_remI /* ROUTINE: $$remI DESCRIPTION: . $$remI returns the remainder of the division of two signed 32-bit . integers. The sign of the remainder is the same as the sign of . the dividend. INPUT REGISTERS: . arg0 == dividend . arg1 == divisor . mrp == return pc . sr0 == return space when called externally OUTPUT REGISTERS: . arg0 = destroyed . arg1 = destroyed . ret1 = remainder OTHER REGISTERS AFFECTED: . r1 = undefined SIDE EFFECTS: . Causes a trap under the following conditions: DIVIDE BY ZERO . Changes memory at the following places: NONE PERMISSIBLE CONTEXT: . Unwindable . Does not create a stack frame . Is usable for internal or external microcode DISCUSSION: . Calls other millicode routines via mrp: NONE . Calls other millicode routines: NONE */ RDEFINE(tmp,r1) RDEFINE(retreg,ret1) SUBSPA_MILLI ATTR_MILLI .proc .callinfo millicode .entry GSYM($$remI) GSYM($$remoI) .export $$remI,MILLICODE .export $$remoI,MILLICODE ldo -1(arg1),tmp /* is there at most one bit set ? */ and,<> arg1,tmp,r0 /* if not, don't use power of 2 */ addi,> 0,arg1,r0 /* if denominator > 0, use power */ /* of 2 */ b,n LREF(neg_denom) LSYM(pow2) comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */ and arg0,tmp,retreg /* get the result */ MILLIRETN LSYM(neg_num) subi 0,arg0,arg0 /* negate numerator */ and arg0,tmp,retreg /* get the result */ subi 0,retreg,retreg /* negate result */ MILLIRETN LSYM(neg_denom) addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */ /* of 2 */ b,n LREF(regular_seq) sub r0,arg1,tmp /* make denominator positive */ comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */ ldo -1(tmp),retreg /* is there at most one bit set ? */ and,= tmp,retreg,r0 /* if not, go to regular_seq */ b,n LREF(regular_seq) comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */ and arg0,retreg,retreg MILLIRETN LSYM(neg_num_2) subi 0,arg0,tmp /* test against 0x80000000 */ and tmp,retreg,retreg subi 0,retreg,retreg MILLIRETN LSYM(regular_seq) addit,= 0,arg1,0 /* trap if div by zero */ add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ sub 0,retreg,retreg /* make it positive */ sub 0,arg1, tmp /* clear carry, */ /* negate the divisor */ ds 0, tmp,0 /* set V-bit to the comple- */ /* ment of the divisor sign */ or 0,0, tmp /* clear tmp */ add retreg,retreg,retreg /* shift msb bit into carry */ ds tmp,arg1, tmp /* 1st divide step, if no carry */ /* out, msb of quotient = 0 */ addc retreg,retreg,retreg /* shift retreg with/into carry */ LSYM(t1) ds tmp,arg1, tmp /* 2nd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 3rd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 4th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 5th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 6th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 7th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 8th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 9th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 10th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 11th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 12th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 13th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 14th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 15th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 16th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 17th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 18th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 19th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 20th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 21st divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 22nd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 23rd divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 24th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 25th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 26th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 27th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 28th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 29th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 30th divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 31st divide step */ addc retreg,retreg,retreg /* shift retreg with/into carry */ ds tmp,arg1, tmp /* 32nd divide step, */ addc retreg,retreg,retreg /* shift last bit into retreg */ movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */ add,< arg1,0,0 /* if arg1 > 0, add arg1 */ add,tr tmp,arg1,retreg /* for correcting remainder tmp */ sub tmp,arg1,retreg /* else add absolute value arg1 */ LSYM(finish) add,>= arg0,0,0 /* set sign of remainder */ sub 0,retreg,retreg /* to sign of dividend */ MILLIRET nop .exit .procend #ifdef milliext .origin 0x00000200 #endif .end #endif #ifdef L_remU /* ROUTINE: $$remU . Single precision divide for remainder with unsigned binary integers. . . The remainder must be dividend-(dividend/divisor)*divisor. . Divide by zero is trapped. INPUT REGISTERS: . arg0 == dividend . arg1 == divisor . mrp == return pc . sr0 == return space when called externally OUTPUT REGISTERS: . arg0 = undefined . arg1 = undefined . ret1 = remainder OTHER REGISTERS AFFECTED: . r1 = undefined SIDE EFFECTS: . Causes a trap under the following conditions: DIVIDE BY ZERO . Changes memory at the following places: NONE PERMISSIBLE CONTEXT: . Unwindable. . Does not create a stack frame. . Suitable for internal or external millicode. . Assumes the special millicode register conventions. DISCUSSION: . Calls other millicode routines using mrp: NONE . Calls other millicode routines: NONE */ RDEFINE(temp,r1) RDEFINE(rmndr,ret1) /* r29 */ SUBSPA_MILLI ATTR_MILLI .export $$remU,millicode .proc .callinfo millicode .entry GSYM($$remU) ldo -1(arg1),temp /* is there at most one bit set ? */ and,= arg1,temp,r0 /* if not, don't use power of 2 */ b LREF(regular_seq) addit,= 0,arg1,r0 /* trap on div by zero */ and arg0,temp,rmndr /* get the result for power of 2 */ MILLIRETN LSYM(regular_seq) comib,>=,n 0,arg1,LREF(special_case) subi 0,arg1,rmndr /* clear carry, negate the divisor */ ds r0,rmndr,r0 /* set V-bit to 1 */ add arg0,arg0,temp /* shift msb bit into carry */ ds r0,arg1,rmndr /* 1st divide step, if no carry */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 2nd divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 3rd divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 4th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 5th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 6th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 7th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 8th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 9th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 10th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 11th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 12th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 13th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 14th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 15th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 16th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 17th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 18th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 19th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 20th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 21st divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 22nd divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 23rd divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 24th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 25th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 26th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 27th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 28th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 29th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 30th divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 31st divide step */ addc temp,temp,temp /* shift temp with/into carry */ ds rmndr,arg1,rmndr /* 32nd divide step, */ comiclr,<= 0,rmndr,r0 add rmndr,arg1,rmndr /* correction */ MILLIRETN nop /* Putting >= on the last DS and deleting COMICLR does not work! */ LSYM(special_case) sub,>>= arg0,arg1,rmndr copy arg0,rmndr MILLIRETN nop .exit .procend .end #endif #ifdef L_div_const /* ROUTINE: $$divI_2 . $$divI_3 $$divU_3 . $$divI_4 . $$divI_5 $$divU_5 . $$divI_6 $$divU_6 . $$divI_7 $$divU_7 . $$divI_8 . $$divI_9 $$divU_9 . $$divI_10 $$divU_10 . . $$divI_12 $$divU_12 . . $$divI_14 $$divU_14 . $$divI_15 $$divU_15 . $$divI_16 . $$divI_17 $$divU_17 . . Divide by selected constants for single precision binary integers. INPUT REGISTERS: . arg0 == dividend . mrp == return pc . sr0 == return space when called externally OUTPUT REGISTERS: . arg0 = undefined . arg1 = undefined . ret1 = quotient OTHER REGISTERS AFFECTED: . r1 = undefined SIDE EFFECTS: . Causes a trap under the following conditions: NONE . Changes memory at the following places: NONE PERMISSIBLE CONTEXT: . Unwindable. . Does not create a stack frame. . Suitable for internal or external millicode. . Assumes the special millicode register conventions. DISCUSSION: . Calls other millicode routines using mrp: NONE . Calls other millicode routines: NONE */ /* TRUNCATED DIVISION BY SMALL INTEGERS We are interested in q(x) = floor(x/y), where x >= 0 and y > 0 (with y fixed). Let a = floor(z/y), for some choice of z. Note that z will be chosen so that division by z is cheap. Let r be the remainder(z/y). In other words, r = z - ay. Now, our method is to choose a value for b such that q'(x) = floor((ax+b)/z) is equal to q(x) over as large a range of x as possible. If the two are equal over a sufficiently large range, and if it is easy to form the product (ax), and it is easy to divide by z, then we can perform the division much faster than the general division algorithm. So, we want the following to be true: . For x in the following range: . . ky <= x < (k+1)y . . implies that . . k <= (ax+b)/z < (k+1) We want to determine b such that this is true for all k in the range {0..K} for some maximum K. Since (ax+b) is an increasing function of x, we can take each bound separately to determine the "best" value for b. (ax+b)/z < (k+1) implies (a((k+1)y-1)+b < (k+1)z implies b < a + (k+1)(z-ay) implies b < a + (k+1)r This needs to be true for all k in the range {0..K}. In particular, it is true for k = 0 and this leads to a maximum acceptable value for b. b < a+r or b <= a+r-1 Taking the other bound, we have k <= (ax+b)/z implies k <= (aky+b)/z implies k(z-ay) <= b implies kr <= b Clearly, the largest range for k will be achieved by maximizing b, when r is not zero. When r is zero, then the simplest choice for b is 0. When r is not 0, set . b = a+r-1 Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y) for all x in the range: . 0 <= x < (K+1)y We need to determine what K is. Of our two bounds, . b < a+(k+1)r is satisfied for all k >= 0, by construction. The other bound is . kr <= b This is always true if r = 0. If r is not 0 (the usual case), then K = floor((a+r-1)/r), is the maximum value for k. Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct answer for q(x) = floor(x/y) when x is in the range (0,(K+1)y-1) K = floor((a+r-1)/r) To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that the formula for q'(x) yields the correct value of q(x) for all x representable by a single word in HPPA. We are also constrained in that computing the product (ax), adding b, and dividing by z must all be done quickly, otherwise we will be better off going through the general algorithm using the DS instruction, which uses approximately 70 cycles. For each y, there is a choice of z which satisfies the constraints for (K+1)y >= 2**32. We may not, however, be able to satisfy the timing constraints for arbitrary y. It seems that z being equal to a power of 2 or a power of 2 minus 1 is as good as we can do, since it minimizes the time to do division by z. We want the choice of z to also result in a value for (a) that minimizes the computation of the product (ax). This is best achieved if (a) has a regular bit pattern (so the multiplication can be done with shifts and adds). The value of (a) also needs to be less than 2**32 so the product is always guaranteed to fit in 2 words. In actual practice, the following should be done: 1) For negative x, you should take the absolute value and remember . the fact so that the result can be negated. This obviously does . not apply in the unsigned case. 2) For even y, you should factor out the power of 2 that divides y . and divide x by it. You can then proceed by dividing by the . odd factor of y. Here is a table of some odd values of y, and corresponding choices for z which are "good". y z r a (hex) max x (hex) 3 2**32 1 55555555 100000001 5 2**32 1 33333333 100000003 7 2**24-1 0 249249 (infinite) 9 2**24-1 0 1c71c7 (infinite) 11 2**20-1 0 1745d (infinite) 13 2**24-1 0 13b13b (infinite) 15 2**32 1 11111111 10000000d 17 2**32 1 f0f0f0f 10000000f If r is 1, then b = a+r-1 = a. This simplifies the computation of (ax+b), since you can compute (x+1)(a) instead. If r is 0, then b = 0 is ok to use which simplifies (ax+b). The bit patterns for 55555555, 33333333, and 11111111 are obviously very regular. The bit patterns for the other values of a above are: y (hex) (binary) 7 249249 001001001001001001001001 << regular >> 9 1c71c7 000111000111000111000111 << regular >> 11 1745d 000000010111010001011101 << irregular >> 13 13b13b 000100111011000100111011 << irregular >> The bit patterns for (a) corresponding to (y) of 11 and 13 may be too irregular to warrant using this method. When z is a power of 2 minus 1, then the division by z is slightly more complicated, involving an iterative solution. The code presented here solves division by 1 through 17, except for 11 and 13. There are algorithms for both signed and unsigned quantities given. TIMINGS (cycles) divisor positive negative unsigned . 1 2 2 2 . 2 4 4 2 . 3 19 21 19 . 4 4 4 2 . 5 18 22 19 . 6 19 22 19 . 8 4 4 2 . 10 18 19 17 . 12 18 20 18 . 15 16 18 16 . 16 4 4 2 . 17 16 18 16 Now, the algorithm for 7, 9, and 14 is an iterative one. That is, a loop body is executed until the tentative quotient is 0. The number of times the loop body is executed varies depending on the dividend, but is never more than two times. If the dividend is less than the divisor, then the loop body is not executed at all. Each iteration adds 4 cycles to the timings. divisor positive negative unsigned . 7 19+4n 20+4n 20+4n n = number of iterations . 9 21+4n 22+4n 21+4n . 14 21+4n 22+4n 20+4n To give an idea of how the number of iterations varies, here is a table of dividend versus number of iterations when dividing by 7. smallest largest required dividend dividend iterations . 0 6 0 . 7 0x6ffffff 1 0x1000006 0xffffffff 2 There is some overlap in the range of numbers requiring 1 and 2 iterations. */ RDEFINE(t2,r1) RDEFINE(x2,arg0) /* r26 */ RDEFINE(t1,arg1) /* r25 */ RDEFINE(x1,ret1) /* r29 */ SUBSPA_MILLI_DIV ATTR_MILLI .proc .callinfo millicode .entry /* NONE of these routines require a stack frame ALL of these routines are unwindable from millicode */ GSYM($$divide_by_constant) .export $$divide_by_constant,millicode /* Provides a "nice" label for the code covered by the unwind descriptor for things like gprof. */ /* DIVISION BY 2 (shift by 1) */ GSYM($$divI_2) .export $$divI_2,millicode comclr,>= arg0,0,0 addi 1,arg0,arg0 MILLIRET extrs arg0,30,31,ret1 /* DIVISION BY 4 (shift by 2) */ GSYM($$divI_4) .export $$divI_4,millicode comclr,>= arg0,0,0 addi 3,arg0,arg0 MILLIRET extrs arg0,29,30,ret1 /* DIVISION BY 8 (shift by 3) */ GSYM($$divI_8) .export $$divI_8,millicode comclr,>= arg0,0,0 addi 7,arg0,arg0 MILLIRET extrs arg0,28,29,ret1 /* DIVISION BY 16 (shift by 4) */ GSYM($$divI_16) .export $$divI_16,millicode comclr,>= arg0,0,0 addi 15,arg0,arg0 MILLIRET extrs arg0,27,28,ret1 /**************************************************************************** * * DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these * * includes 3,5,15,17 and also 6,10,12 * ****************************************************************************/ /* DIVISION BY 3 (use z = 2**32; a = 55555555) */ GSYM($$divI_3) .export $$divI_3,millicode comb,<,N x2,0,LREF(neg3) addi 1,x2,x2 /* this cannot overflow */ extru x2,1,2,x1 /* multiply by 5 to get started */ sh2add x2,x2,x2 b LREF(pos) addc x1,0,x1 LSYM(neg3) subi 1,x2,x2 /* this cannot overflow */ extru x2,1,2,x1 /* multiply by 5 to get started */ sh2add x2,x2,x2 b LREF(neg) addc x1,0,x1 GSYM($$divU_3) .export $$divU_3,millicode addi 1,x2,x2 /* this CAN overflow */ addc 0,0,x1 shd x1,x2,30,t1 /* multiply by 5 to get started */ sh2add x2,x2,x2 b LREF(pos) addc x1,t1,x1 /* DIVISION BY 5 (use z = 2**32; a = 33333333) */ GSYM($$divI_5) .export $$divI_5,millicode comb,<,N x2,0,LREF(neg5) addi 3,x2,t1 /* this cannot overflow */ sh1add x2,t1,x2 /* multiply by 3 to get started */ b LREF(pos) addc 0,0,x1 LSYM(neg5) sub 0,x2,x2 /* negate x2 */ addi 1,x2,x2 /* this cannot overflow */ shd 0,x2,31,x1 /* get top bit (can be 1) */ sh1add x2,x2,x2 /* multiply by 3 to get started */ b LREF(neg) addc x1,0,x1 GSYM($$divU_5) .export $$divU_5,millicode addi 1,x2,x2 /* this CAN overflow */ addc 0,0,x1 shd x1,x2,31,t1 /* multiply by 3 to get started */ sh1add x2,x2,x2 b LREF(pos) addc t1,x1,x1 /* DIVISION BY 6 (shift to divide by 2 then divide by 3) */ GSYM($$divI_6) .export $$divI_6,millicode comb,<,N x2,0,LREF(neg6) extru x2,30,31,x2 /* divide by 2 */ addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */ sh2add x2,t1,x2 /* multiply by 5 to get started */ b LREF(pos) addc 0,0,x1 LSYM(neg6) subi 2,x2,x2 /* negate, divide by 2, and add 1 */ /* negation and adding 1 are done */ /* at the same time by the SUBI */ extru x2,30,31,x2 shd 0,x2,30,x1 sh2add x2,x2,x2 /* multiply by 5 to get started */ b LREF(neg) addc x1,0,x1 GSYM($$divU_6) .export $$divU_6,millicode extru x2,30,31,x2 /* divide by 2 */ addi 1,x2,x2 /* cannot carry */ shd 0,x2,30,x1 /* multiply by 5 to get started */ sh2add x2,x2,x2 b LREF(pos) addc x1,0,x1 /* DIVISION BY 10 (shift to divide by 2 then divide by 5) */ GSYM($$divU_10) .export $$divU_10,millicode extru x2,30,31,x2 /* divide by 2 */ addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */ sh1add x2,t1,x2 /* multiply by 3 to get started */ addc 0,0,x1 LSYM(pos) shd x1,x2,28,t1 /* multiply by 0x11 */ shd x2,0,28,t2 add x2,t2,x2 addc x1,t1,x1 LSYM(pos_for_17) shd x1,x2,24,t1 /* multiply by 0x101 */ shd x2,0,24,t2 add x2,t2,x2 addc x1,t1,x1 shd x1,x2,16,t1 /* multiply by 0x10001 */ shd x2,0,16,t2 add x2,t2,x2 MILLIRET addc x1,t1,x1 GSYM($$divI_10) .export $$divI_10,millicode comb,< x2,0,LREF(neg10) copy 0,x1 extru x2,30,31,x2 /* divide by 2 */ addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */ sh1add x2,x2,x2 /* multiply by 3 to get started */ LSYM(neg10) subi 2,x2,x2 /* negate, divide by 2, and add 1 */ /* negation and adding 1 are done */ /* at the same time by the SUBI */ extru x2,30,31,x2 sh1add x2,x2,x2 /* multiply by 3 to get started */ LSYM(neg) shd x1,x2,28,t1 /* multiply by 0x11 */ shd x2,0,28,t2 add x2,t2,x2 addc x1,t1,x1 LSYM(neg_for_17) shd x1,x2,24,t1 /* multiply by 0x101 */ shd x2,0,24,t2 add x2,t2,x2 addc x1,t1,x1 shd x1,x2,16,t1 /* multiply by 0x10001 */ shd x2,0,16,t2 add x2,t2,x2 addc x1,t1,x1 MILLIRET sub 0,x1,x1 /* DIVISION BY 12 (shift to divide by 4 then divide by 3) */ GSYM($$divI_12) .export $$divI_12,millicode comb,< x2,0,LREF(neg12) copy 0,x1 extru x2,29,30,x2 /* divide by 4 */ addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */ sh2add x2,x2,x2 /* multiply by 5 to get started */ LSYM(neg12) subi 4,x2,x2 /* negate, divide by 4, and add 1 */ /* negation and adding 1 are done */ /* at the same time by the SUBI */ extru x2,29,30,x2 b LREF(neg) sh2add x2,x2,x2 /* multiply by 5 to get started */ GSYM($$divU_12) .export $$divU_12,millicode extru x2,29,30,x2 /* divide by 4 */ addi 5,x2,t1 /* cannot carry */ sh2add x2,t1,x2 /* multiply by 5 to get started */ b LREF(pos) addc 0,0,x1 /* DIVISION BY 15 (use z = 2**32; a = 11111111) */ GSYM($$divI_15) .export $$divI_15,millicode comb,< x2,0,LREF(neg15) copy 0,x1 addib,tr 1,x2,LREF(pos)+4 shd x1,x2,28,t1 LSYM(neg15) b LREF(neg) subi 1,x2,x2 GSYM($$divU_15) .export $$divU_15,millicode addi 1,x2,x2 /* this CAN overflow */ b LREF(pos) addc 0,0,x1 /* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */ GSYM($$divI_17) .export $$divI_17,millicode comb,<,n x2,0,LREF(neg17) addi 1,x2,x2 /* this cannot overflow */ shd 0,x2,28,t1 /* multiply by 0xf to get started */ shd x2,0,28,t2 sub t2,x2,x2 b LREF(pos_for_17) subb t1,0,x1 LSYM(neg17) subi 1,x2,x2 /* this cannot overflow */ shd 0,x2,28,t1 /* multiply by 0xf to get started */ shd x2,0,28,t2 sub t2,x2,x2 b LREF(neg_for_17) subb t1,0,x1 GSYM($$divU_17) .export $$divU_17,millicode addi 1,x2,x2 /* this CAN overflow */ addc 0,0,x1 shd x1,x2,28,t1 /* multiply by 0xf to get started */ LSYM(u17) shd x2,0,28,t2 sub t2,x2,x2 b LREF(pos_for_17) subb t1,x1,x1 /* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these includes 7,9 and also 14 z = 2**24-1 r = z mod x = 0 so choose b = 0 Also, in order to divide by z = 2**24-1, we approximate by dividing by (z+1) = 2**24 (which is easy), and then correcting. (ax) = (z+1)q' + r . = zq' + (q'+r) So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1) Then the true remainder of (ax)/z is (q'+r). Repeat the process with this new remainder, adding the tentative quotients together, until a tentative quotient is 0 (and then we are done). There is one last correction to be done. It is possible that (q'+r) = z. If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But, in fact, we need to add 1 more to the quotient. Now, it turns out that this happens if and only if the original value x is an exact multiple of y. So, to avoid a three instruction test at the end, instead use 1 instruction to add 1 to x at the beginning. */ /* DIVISION BY 7 (use z = 2**24-1; a = 249249) */ GSYM($$divI_7) .export $$divI_7,millicode comb,<,n x2,0,LREF(neg7) LSYM(7) addi 1,x2,x2 /* cannot overflow */ shd 0,x2,29,x1 sh3add x2,x2,x2 addc x1,0,x1 LSYM(pos7) shd x1,x2,26,t1 shd x2,0,26,t2 add x2,t2,x2 addc x1,t1,x1 shd x1,x2,20,t1 shd x2,0,20,t2 add x2,t2,x2 addc x1,t1,t1 /* computed . Now divide it by (2**24 - 1) */ copy 0,x1 shd,= t1,x2,24,t1 /* tentative quotient */ LSYM(1) addb,tr t1,x1,LREF(2) /* add to previous quotient */ extru x2,31,24,x2 /* new remainder (unadjusted) */ MILLIRETN LSYM(2) addb,tr t1,x2,LREF(1) /* adjust remainder */ extru,= x2,7,8,t1 /* new quotient */ LSYM(neg7) subi 1,x2,x2 /* negate x2 and add 1 */ LSYM(8) shd 0,x2,29,x1 sh3add x2,x2,x2 addc x1,0,x1 LSYM(neg7_shift) shd x1,x2,26,t1 shd x2,0,26,t2 add x2,t2,x2 addc x1,t1,x1 shd x1,x2,20,t1 shd x2,0,20,t2 add x2,t2,x2 addc x1,t1,t1 /* computed . Now divide it by (2**24 - 1) */ copy 0,x1 shd,= t1,x2,24,t1 /* tentative quotient */ LSYM(3) addb,tr t1,x1,LREF(4) /* add to previous quotient */ extru x2,31,24,x2 /* new remainder (unadjusted) */ MILLIRET sub 0,x1,x1 /* negate result */ LSYM(4) addb,tr t1,x2,LREF(3) /* adjust remainder */ extru,= x2,7,8,t1 /* new quotient */ GSYM($$divU_7) .export $$divU_7,millicode addi 1,x2,x2 /* can carry */ addc 0,0,x1 shd x1,x2,29,t1 sh3add x2,x2,x2 b LREF(pos7) addc t1,x1,x1 /* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */ GSYM($$divI_9) .export $$divI_9,millicode comb,<,n x2,0,LREF(neg9) addi 1,x2,x2 /* cannot overflow */ shd 0,x2,29,t1 shd x2,0,29,t2 sub t2,x2,x2 b LREF(pos7) subb t1,0,x1 LSYM(neg9) subi 1,x2,x2 /* negate and add 1 */ shd 0,x2,29,t1 shd x2,0,29,t2 sub t2,x2,x2 b LREF(neg7_shift) subb t1,0,x1 GSYM($$divU_9) .export $$divU_9,millicode addi 1,x2,x2 /* can carry */ addc 0,0,x1 shd x1,x2,29,t1 shd x2,0,29,t2 sub t2,x2,x2 b LREF(pos7) subb t1,x1,x1 /* DIVISION BY 14 (shift to divide by 2 then divide by 7) */ GSYM($$divI_14) .export $$divI_14,millicode comb,<,n x2,0,LREF(neg14) GSYM($$divU_14) .export $$divU_14,millicode b LREF(7) /* go to 7 case */ extru x2,30,31,x2 /* divide by 2 */ LSYM(neg14) subi 2,x2,x2 /* negate (and add 2) */ b LREF(8) extru x2,30,31,x2 /* divide by 2 */ .exit .procend .end #endif #ifdef L_mulI /* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */ /****************************************************************************** This routine is used on PA2.0 processors when gcc -mno-fpregs is used ROUTINE: $$mulI DESCRIPTION: $$mulI multiplies two single word integers, giving a single word result. INPUT REGISTERS: arg0 = Operand 1 arg1 = Operand 2 r31 == return pc sr0 == return space when called externally OUTPUT REGISTERS: arg0 = undefined arg1 = undefined ret1 = result OTHER REGISTERS AFFECTED: r1 = undefined SIDE EFFECTS: Causes a trap under the following conditions: NONE Changes memory at the following places: NONE PERMISSIBLE CONTEXT: Unwindable Does not create a stack frame Is usable for internal or external microcode DISCUSSION: Calls other millicode routines via mrp: NONE Calls other millicode routines: NONE ***************************************************************************/ #define a0 %arg0 #define a1 %arg1 #define t0 %r1 #define r %ret1 #define a0__128a0 zdep a0,24,25,a0 #define a0__256a0 zdep a0,23,24,a0 #define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0) #define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1) #define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2) #define b_n_ret_t0 b,n LREF(ret_t0) #define b_e_shift b LREF(e_shift) #define b_e_t0ma0 b LREF(e_t0ma0) #define b_e_t0 b LREF(e_t0) #define b_e_t0a0 b LREF(e_t0a0) #define b_e_t02a0 b LREF(e_t02a0) #define b_e_t04a0 b LREF(e_t04a0) #define b_e_2t0 b LREF(e_2t0) #define b_e_2t0a0 b LREF(e_2t0a0) #define b_e_2t04a0 b LREF(e2t04a0) #define b_e_3t0 b LREF(e_3t0) #define b_e_4t0 b LREF(e_4t0) #define b_e_4t0a0 b LREF(e_4t0a0) #define b_e_4t08a0 b LREF(e4t08a0) #define b_e_5t0 b LREF(e_5t0) #define b_e_8t0 b LREF(e_8t0) #define b_e_8t0a0 b LREF(e_8t0a0) #define r__r_a0 add r,a0,r #define r__r_2a0 sh1add a0,r,r #define r__r_4a0 sh2add a0,r,r #define r__r_8a0 sh3add a0,r,r #define r__r_t0 add r,t0,r #define r__r_2t0 sh1add t0,r,r #define r__r_4t0 sh2add t0,r,r #define r__r_8t0 sh3add t0,r,r #define t0__3a0 sh1add a0,a0,t0 #define t0__4a0 sh2add a0,0,t0 #define t0__5a0 sh2add a0,a0,t0 #define t0__8a0 sh3add a0,0,t0 #define t0__9a0 sh3add a0,a0,t0 #define t0__16a0 zdep a0,27,28,t0 #define t0__32a0 zdep a0,26,27,t0 #define t0__64a0 zdep a0,25,26,t0 #define t0__128a0 zdep a0,24,25,t0 #define t0__t0ma0 sub t0,a0,t0 #define t0__t0_a0 add t0,a0,t0 #define t0__t0_2a0 sh1add a0,t0,t0 #define t0__t0_4a0 sh2add a0,t0,t0 #define t0__t0_8a0 sh3add a0,t0,t0 #define t0__2t0_a0 sh1add t0,a0,t0 #define t0__3t0 sh1add t0,t0,t0 #define t0__4t0 sh2add t0,0,t0 #define t0__4t0_a0 sh2add t0,a0,t0 #define t0__5t0 sh2add t0,t0,t0 #define t0__8t0 sh3add t0,0,t0 #define t0__8t0_a0 sh3add t0,a0,t0 #define t0__9t0 sh3add t0,t0,t0 #define t0__16t0 zdep t0,27,28,t0 #define t0__32t0 zdep t0,26,27,t0 #define t0__256a0 zdep a0,23,24,t0 SUBSPA_MILLI ATTR_MILLI .align 16 .proc .callinfo millicode .export $$mulI,millicode GSYM($$mulI) combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */ copy 0,r /* zero out the result */ xor a0,a1,a0 /* swap a0 & a1 using the */ xor a0,a1,a1 /* old xor trick */ xor a0,a1,a0 LSYM(l4) combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */ zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ sub,> 0,a1,t0 /* otherwise negate both and */ combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */ sub 0,a0,a1 movb,tr,n t0,a0,LREF(l2) /* 10th inst. */ LSYM(l0) r__r_t0 /* add in this partial product */ LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */ LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ LSYM(l3) blr t0,0 /* case on these 8 bits ****** */ extru a1,23,24,a1 /* a1 >>= 8 ****************** */ /*16 insts before this. */ /* a0 <<= 8 ************************** */ LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0 LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0 LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0 LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0 LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0 LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0 LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0 LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0 LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0 LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0 LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0 LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0 LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0 LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0 LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0 LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0 LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0 LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0 LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0 LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0 LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0 LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0 LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0 LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0 LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0 LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0 LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0 LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0 LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0 LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0 LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0 LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0 LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0 LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0 LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0 LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0 LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0 LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0 LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0 LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0 LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0 LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0 LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0 LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0 LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0 LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0 LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0 LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0 LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0 LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0 LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0 LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0 LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0 LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0 LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0 LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0 LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0 LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0 LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0 LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0 LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0 LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0 LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0 LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0 LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0 LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0 LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0 LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0 LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0 LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0 LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0 LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0 LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0 LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0 LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0 LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0 LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0 LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0 LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0 LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0 LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0 LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0 LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0 LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0 LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0 LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0 LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0 LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0 LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0 LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0 LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0 LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0 LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0 LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0 LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0 LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0 LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0 LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0 LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0 LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0 LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0 LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0 LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0 LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0 LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0 LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0 LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0 LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0 LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0 LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0 LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0 LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0 LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0 LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0 LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0 LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 /*1040 insts before this. */ LSYM(ret_t0) MILLIRET LSYM(e_t0) r__r_t0 LSYM(e_shift) a1_ne_0_b_l2 a0__256a0 /* a0 <<= 8 *********** */ MILLIRETN LSYM(e_t0ma0) a1_ne_0_b_l0 t0__t0ma0 MILLIRET r__r_t0 LSYM(e_t0a0) a1_ne_0_b_l0 t0__t0_a0 MILLIRET r__r_t0 LSYM(e_t02a0) a1_ne_0_b_l0 t0__t0_2a0 MILLIRET r__r_t0 LSYM(e_t04a0) a1_ne_0_b_l0 t0__t0_4a0 MILLIRET r__r_t0 LSYM(e_2t0) a1_ne_0_b_l1 r__r_2t0 MILLIRETN LSYM(e_2t0a0) a1_ne_0_b_l0 t0__2t0_a0 MILLIRET r__r_t0 LSYM(e2t04a0) t0__t0_2a0 a1_ne_0_b_l1 r__r_2t0 MILLIRETN LSYM(e_3t0) a1_ne_0_b_l0 t0__3t0 MILLIRET r__r_t0 LSYM(e_4t0) a1_ne_0_b_l1 r__r_4t0 MILLIRETN LSYM(e_4t0a0) a1_ne_0_b_l0 t0__4t0_a0 MILLIRET r__r_t0 LSYM(e4t08a0) t0__t0_2a0 a1_ne_0_b_l1 r__r_4t0 MILLIRETN LSYM(e_5t0) a1_ne_0_b_l0 t0__5t0 MILLIRET r__r_t0 LSYM(e_8t0) a1_ne_0_b_l1 r__r_8t0 MILLIRETN LSYM(e_8t0a0) a1_ne_0_b_l0 t0__8t0_a0 MILLIRET r__r_t0 .procend .end #endif