/* cbrtq.c * * Cube root, __float128 precision * * * * SYNOPSIS: * * __float128 x, y, cbrtq(); * * y = cbrtq( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -8,8 100000 1.3e-34 3.9e-35 * IEEE exp(+-707) 100000 1.3e-34 4.3e-35 * */ /* Cephes Math Library Release 2.2: January, 1991 Copyright 1984, 1991 by Stephen L. Moshier Adapted for glibc October, 2001. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include "quadmath-imp.h" static const __float128 CBRT2 = 1.259921049894873164767210607278228350570251Q; static const __float128 CBRT4 = 1.587401051968199474751705639272308260391493Q; static const __float128 CBRT2I = 0.7937005259840997373758528196361541301957467Q; static const __float128 CBRT4I = 0.6299605249474365823836053036391141752851257Q; __float128 cbrtq ( __float128 x) { int e, rem, sign; __float128 z; if (!finiteq (x)) return x + x; if (x == 0) return (x); if (x > 0) sign = 1; else { sign = -1; x = -x; } z = x; /* extract power of 2, leaving mantissa between 0.5 and 1 */ x = frexpq (x, &e); /* Approximate cube root of number between .5 and 1, peak relative error = 1.2e-6 */ x = ((((1.3584464340920900529734e-1Q * x - 6.3986917220457538402318e-1Q) * x + 1.2875551670318751538055e0Q) * x - 1.4897083391357284957891e0Q) * x + 1.3304961236013647092521e0Q) * x + 3.7568280825958912391243e-1Q; /* exponent divided by 3 */ if (e >= 0) { rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2; else if (rem == 2) x *= CBRT4; } else { /* argument less than 1 */ e = -e; rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2I; else if (rem == 2) x *= CBRT4I; e = -e; } /* multiply by power of 2 */ x = ldexpq (x, e); /* Newton iteration */ x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q; x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q; x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q; if (sign < 0) x = -x; return (x); }