extern void abort (void); #define N 256 int a[N], b[N / 16][8][4], c[N / 32][8][8]; volatile int d, e; int main () { int i, j, k, l, m; #pragma omp parallel private (l) { #pragma omp for schedule(static, 1) ordered (1) nowait for (i = 0; i < N; i++) { #pragma omp atomic write a[i] = 1; #pragma omp ordered depend(sink: i - 1) if (i) { #pragma omp atomic read l = a[i - 1]; if (l < 2) abort (); } #pragma omp atomic write a[i] = 2; if (i < N - 1) { #pragma omp atomic read l = a[i + 1]; if (l == 3) abort (); } #pragma omp ordered depend(source) #pragma omp atomic write a[i] = 3; } #pragma omp for schedule(static) ordered (3) nowait for (i = 2; i < N / 16 - 1; i++) for (j = 0; j < 8; j += 2) for (k = 1; k <= 3; k++) { #pragma omp atomic write b[i][j][k] = 1; #pragma omp ordered depend(sink: i, j - 2, k - 1) \ depend(sink: i - 2, j - 2, k + 1) #pragma omp ordered depend(sink: i - 3, j + 2, k - 2) if (j >= 2 && k > 1) { #pragma omp atomic read l = b[i][j - 2][k - 1]; if (l < 2) abort (); } #pragma omp atomic write b[i][j][k] = 2; if (i >= 4 && j >= 2 && k < 3) { #pragma omp atomic read l = b[i - 2][j - 2][k + 1]; if (l < 2) abort (); } if (i >= 5 && j < N / 16 - 3 && k == 3) { #pragma omp atomic read l = b[i - 3][j + 2][k - 2]; if (l < 2) abort (); } #pragma omp ordered depend(source) #pragma omp atomic write b[i][j][k] = 3; } #define A(n) int n; #define B(n) A(n##0) A(n##1) A(n##2) A(n##3) #define C(n) B(n##0) B(n##1) B(n##2) B(n##3) #define D(n) C(n##0) C(n##1) C(n##2) C(n##3) D(m) #undef A #pragma omp for collapse (2) ordered(61) schedule(dynamic, 15) for (i = 0; i < N / 32; i++) for (j = 7; j > 1; j--) for (k = 6; k >= 0; k -= 2) #define A(n) for (n = 4; n < 5; n++) D(m) #undef A { #pragma omp atomic write c[i][j][k] = 1; #define A(n) ,n #define E(n) C(n##0) C(n##1) C(n##2) B(n##30) B(n##31) A(n##320) A(n##321) #pragma omp ordered depend (sink: i, j, k + 2 E(m)) \ depend (sink:i - 2, j + 1, k - 4 E(m)) \ depend(sink: i - 1, j - 2, k - 2 E(m)) if (k <= 4) { #pragma omp atomic read l = c[i][j][k + 2]; if (l < 2) abort (); } #pragma omp atomic write c[i][j][k] = 2; if (i >= 2 && j < 7 && k >= 4) { #pragma omp atomic read l = c[i - 2][j + 1][k - 4]; if (l < 2) abort (); } if (i >= 1 && j >= 4 && k >= 2) { #pragma omp atomic read l = c[i - 1][j - 2][k - 2]; if (l < 2) abort (); } #pragma omp ordered depend (source) #pragma omp atomic write c[i][j][k] = 3; } #pragma omp for collapse(2) ordered(4) lastprivate (i, j, k) for (i = 0; i < d + 1; i++) for (j = d + 1; j >= 0; j--) for (k = 0; k < d; k++) for (l = 0; l < d + 2; l++) { #pragma omp ordered depend (source) #pragma omp ordered depend (sink:i - 2, j + 2, k - 2, l) if (!e) abort (); } #pragma omp single { if (i != 1 || j != -1 || k != 0) abort (); i = 8; j = 9; k = 10; } #pragma omp for collapse(2) ordered(4) lastprivate (i, j, k, m) for (i = 0; i < d + 1; i++) for (j = d + 1; j >= 0; j--) for (k = 0; k < d + 2; k++) for (m = 0; m < d; m++) { #pragma omp ordered depend (source) #pragma omp ordered depend (sink:i - 2, j + 2, k - 2, m) abort (); } #pragma omp single if (i != 1 || j != -1 || k != 2 || m != 0) abort (); #pragma omp for collapse(2) ordered(4) nowait for (i = 0; i < d + 1; i++) for (j = d; j > 0; j--) for (k = 0; k < d + 2; k++) for (l = 0; l < d + 4; l++) { #pragma omp ordered depend (source) #pragma omp ordered depend (sink:i - 2, j + 2, k - 2, l) if (!e) abort (); } #pragma omp for nowait for (i = 0; i < N; i++) if (a[i] != 3) abort (); #pragma omp for collapse(2) private(k) nowait for (i = 0; i < N / 16; i++) for (j = 0; j < 8; j++) for (k = 0; k < 4; k++) if (b[i][j][k] != 3 * (i >= 2 && i < N / 16 - 1 && (j & 1) == 0 && k >= 1)) abort (); #pragma omp for collapse(3) nowait for (i = 0; i < N / 32; i++) for (j = 0; j < 8; j++) for (k = 0; k < 8; k++) if (c[i][j][k] != 3 * (j >= 2 && (k & 1) == 0)) abort (); } return 0; }