// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package jpeg implements a JPEG image decoder and encoder. // // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. package jpeg import ( "bufio" "image" "image/color" "io" ) // TODO(nigeltao): fix up the doc comment style so that sentences start with // the name of the type or function that they annotate. // A FormatError reports that the input is not a valid JPEG. type FormatError string func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. type UnsupportedError string func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } // Component specification, specified in section B.2.2. type component struct { h int // Horizontal sampling factor. v int // Vertical sampling factor. c uint8 // Component identifier. tq uint8 // Quantization table destination selector. } type block [blockSize]int const ( blockSize = 64 // A DCT block is 8x8. dcTable = 0 acTable = 1 maxTc = 1 maxTh = 3 maxTq = 3 // A grayscale JPEG image has only a Y component. nGrayComponent = 1 // A color JPEG image has Y, Cb and Cr components. nColorComponent = 3 // We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and therefore the // number of luma samples per chroma sample is at most 2 in the horizontal // and 2 in the vertical direction. maxH = 2 maxV = 2 ) const ( soiMarker = 0xd8 // Start Of Image. eoiMarker = 0xd9 // End Of Image. sof0Marker = 0xc0 // Start Of Frame (Baseline). sof2Marker = 0xc2 // Start Of Frame (Progressive). dhtMarker = 0xc4 // Define Huffman Table. dqtMarker = 0xdb // Define Quantization Table. sosMarker = 0xda // Start Of Scan. driMarker = 0xdd // Define Restart Interval. rst0Marker = 0xd0 // ReSTart (0). rst7Marker = 0xd7 // ReSTart (7). app0Marker = 0xe0 // APPlication specific (0). app15Marker = 0xef // APPlication specific (15). comMarker = 0xfe // COMment. ) // Maps from the zig-zag ordering to the natural ordering. var unzig = [blockSize]int{ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, } // If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering. type Reader interface { io.Reader ReadByte() (c byte, err error) } type decoder struct { r Reader width, height int img1 *image.Gray img3 *image.YCbCr ri int // Restart Interval. nComp int comp [nColorComponent]component huff [maxTc + 1][maxTh + 1]huffman quant [maxTq + 1]block b bits tmp [1024]byte } // Reads and ignores the next n bytes. func (d *decoder) ignore(n int) error { for n > 0 { m := len(d.tmp) if m > n { m = n } _, err := io.ReadFull(d.r, d.tmp[0:m]) if err != nil { return err } n -= m } return nil } // Specified in section B.2.2. func (d *decoder) processSOF(n int) error { switch n { case 6 + 3*nGrayComponent: d.nComp = nGrayComponent case 6 + 3*nColorComponent: d.nComp = nColorComponent default: return UnsupportedError("SOF has wrong length") } _, err := io.ReadFull(d.r, d.tmp[:n]) if err != nil { return err } // We only support 8-bit precision. if d.tmp[0] != 8 { return UnsupportedError("precision") } d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) if int(d.tmp[5]) != d.nComp { return UnsupportedError("SOF has wrong number of image components") } for i := 0; i < d.nComp; i++ { hv := d.tmp[7+3*i] d.comp[i].h = int(hv >> 4) d.comp[i].v = int(hv & 0x0f) d.comp[i].c = d.tmp[6+3*i] d.comp[i].tq = d.tmp[8+3*i] if d.nComp == nGrayComponent { continue } // For color images, we only support 4:4:4, 4:2:2 or 4:2:0 chroma // downsampling ratios. This implies that the (h, v) values for the Y // component are either (1, 1), (2, 1) or (2, 2), and the (h, v) // values for the Cr and Cb components must be (1, 1). if i == 0 { if hv != 0x11 && hv != 0x21 && hv != 0x22 { return UnsupportedError("luma downsample ratio") } } else if hv != 0x11 { return UnsupportedError("chroma downsample ratio") } } return nil } // Specified in section B.2.4.1. func (d *decoder) processDQT(n int) error { const qtLength = 1 + blockSize for ; n >= qtLength; n -= qtLength { _, err := io.ReadFull(d.r, d.tmp[0:qtLength]) if err != nil { return err } pq := d.tmp[0] >> 4 if pq != 0 { return UnsupportedError("bad Pq value") } tq := d.tmp[0] & 0x0f if tq > maxTq { return FormatError("bad Tq value") } for i := range d.quant[tq] { d.quant[tq][i] = int(d.tmp[i+1]) } } if n != 0 { return FormatError("DQT has wrong length") } return nil } // makeImg allocates and initializes the destination image. func (d *decoder) makeImg(h0, v0, mxx, myy int) { if d.nComp == nGrayComponent { m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) return } var subsampleRatio image.YCbCrSubsampleRatio switch h0 * v0 { case 1: subsampleRatio = image.YCbCrSubsampleRatio444 case 2: subsampleRatio = image.YCbCrSubsampleRatio422 case 4: subsampleRatio = image.YCbCrSubsampleRatio420 default: panic("unreachable") } m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) } // Specified in section B.2.3. func (d *decoder) processSOS(n int) error { if d.nComp == 0 { return FormatError("missing SOF marker") } if n != 4+2*d.nComp { return UnsupportedError("SOS has wrong length") } _, err := io.ReadFull(d.r, d.tmp[0:4+2*d.nComp]) if err != nil { return err } if int(d.tmp[0]) != d.nComp { return UnsupportedError("SOS has wrong number of image components") } var scan [nColorComponent]struct { td uint8 // DC table selector. ta uint8 // AC table selector. } for i := 0; i < d.nComp; i++ { cs := d.tmp[1+2*i] // Component selector. if cs != d.comp[i].c { return UnsupportedError("scan components out of order") } scan[i].td = d.tmp[2+2*i] >> 4 scan[i].ta = d.tmp[2+2*i] & 0x0f } // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. mxx := (d.width + 8*h0 - 1) / (8 * h0) myy := (d.height + 8*v0 - 1) / (8 * v0) if d.img1 == nil && d.img3 == nil { d.makeImg(h0, v0, mxx, myy) } mcu, expectedRST := 0, uint8(rst0Marker) var ( b block dc [nColorComponent]int ) for my := 0; my < myy; my++ { for mx := 0; mx < mxx; mx++ { for i := 0; i < d.nComp; i++ { qt := &d.quant[d.comp[i].tq] for j := 0; j < d.comp[i].h*d.comp[i].v; j++ { // TODO(nigeltao): make this a "var b block" once the compiler's escape // analysis is good enough to allocate it on the stack, not the heap. b = block{} // Decode the DC coefficient, as specified in section F.2.2.1. value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) if err != nil { return err } if value > 16 { return UnsupportedError("excessive DC component") } dcDelta, err := d.receiveExtend(value) if err != nil { return err } dc[i] += dcDelta b[0] = dc[i] * qt[0] // Decode the AC coefficients, as specified in section F.2.2.2. for k := 1; k < blockSize; k++ { value, err := d.decodeHuffman(&d.huff[acTable][scan[i].ta]) if err != nil { return err } val0 := value >> 4 val1 := value & 0x0f if val1 != 0 { k += int(val0) if k > blockSize { return FormatError("bad DCT index") } ac, err := d.receiveExtend(val1) if err != nil { return err } b[unzig[k]] = ac * qt[k] } else { if val0 != 0x0f { break } k += 0x0f } } // Perform the inverse DCT and store the MCU component to the image. if d.nComp == nGrayComponent { idct(d.img1.Pix[8*(my*d.img1.Stride+mx):], d.img1.Stride, &b) } else { switch i { case 0: mx0 := h0*mx + (j % 2) my0 := v0*my + (j / 2) idct(d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride, &b) case 1: idct(d.img3.Cb[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b) case 2: idct(d.img3.Cr[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b) } } } // for j } // for i mcu++ if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, // but this one assumes well-formed input, and hence the restart marker follows immediately. _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return err } if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { return FormatError("bad RST marker") } expectedRST++ if expectedRST == rst7Marker+1 { expectedRST = rst0Marker } // Reset the Huffman decoder. d.b = bits{} // Reset the DC components, as per section F.2.1.3.1. dc = [nColorComponent]int{} } } // for mx } // for my return nil } // Specified in section B.2.4.4. func (d *decoder) processDRI(n int) error { if n != 2 { return FormatError("DRI has wrong length") } _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return err } d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) return nil } // decode reads a JPEG image from r and returns it as an image.Image. func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { if rr, ok := r.(Reader); ok { d.r = rr } else { d.r = bufio.NewReader(r) } // Check for the Start Of Image marker. _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { return nil, FormatError("missing SOI marker") } // Process the remaining segments until the End Of Image marker. for { _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } if d.tmp[0] != 0xff { return nil, FormatError("missing 0xff marker start") } marker := d.tmp[1] if marker == eoiMarker { // End Of Image. break } // Read the 16-bit length of the segment. The value includes the 2 bytes for the // length itself, so we subtract 2 to get the number of remaining bytes. _, err = io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 if n < 0 { return nil, FormatError("short segment length") } switch { case marker == sof0Marker: // Start Of Frame (Baseline). err = d.processSOF(n) if configOnly { return nil, err } case marker == sof2Marker: // Start Of Frame (Progressive). err = UnsupportedError("progressive mode") case marker == dhtMarker: // Define Huffman Table. err = d.processDHT(n) case marker == dqtMarker: // Define Quantization Table. err = d.processDQT(n) case marker == sosMarker: // Start Of Scan. err = d.processSOS(n) case marker == driMarker: // Define Restart Interval. err = d.processDRI(n) case marker >= app0Marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment. err = d.ignore(n) default: err = UnsupportedError("unknown marker") } if err != nil { return nil, err } } if d.img1 != nil { return d.img1, nil } if d.img3 != nil { return d.img3, nil } return nil, FormatError("missing SOS marker") } // Decode reads a JPEG image from r and returns it as an image.Image. func Decode(r io.Reader) (image.Image, error) { var d decoder return d.decode(r, false) } // DecodeConfig returns the color model and dimensions of a JPEG image without // decoding the entire image. func DecodeConfig(r io.Reader) (image.Config, error) { var d decoder if _, err := d.decode(r, true); err != nil { return image.Config{}, err } switch d.nComp { case nGrayComponent: return image.Config{ ColorModel: color.GrayModel, Width: d.width, Height: d.height, }, nil case nColorComponent: return image.Config{ ColorModel: color.YCbCrModel, Width: d.width, Height: d.height, }, nil } return image.Config{}, FormatError("missing SOF marker") } func init() { image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) }