// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package png implements a PNG image decoder and encoder. // // The PNG specification is at http://www.w3.org/TR/PNG/. package png import ( "compress/zlib" "encoding/binary" "fmt" "hash" "hash/crc32" "image" "image/color" "io" ) // Color type, as per the PNG spec. const ( ctGrayscale = 0 ctTrueColor = 2 ctPaletted = 3 ctGrayscaleAlpha = 4 ctTrueColorAlpha = 6 ) // A cb is a combination of color type and bit depth. const ( cbInvalid = iota cbG1 cbG2 cbG4 cbG8 cbGA8 cbTC8 cbP1 cbP2 cbP4 cbP8 cbTCA8 cbG16 cbGA16 cbTC16 cbTCA16 ) // Filter type, as per the PNG spec. const ( ftNone = 0 ftSub = 1 ftUp = 2 ftAverage = 3 ftPaeth = 4 nFilter = 5 ) // Decoding stage. // The PNG specification says that the IHDR, PLTE (if present), IDAT and IEND // chunks must appear in that order. There may be multiple IDAT chunks, and // IDAT chunks must be sequential (i.e. they may not have any other chunks // between them). // http://www.w3.org/TR/PNG/#5ChunkOrdering const ( dsStart = iota dsSeenIHDR dsSeenPLTE dsSeenIDAT dsSeenIEND ) const pngHeader = "\x89PNG\r\n\x1a\n" type decoder struct { r io.Reader img image.Image crc hash.Hash32 width, height int depth int palette color.Palette cb int stage int idatLength uint32 tmp [3 * 256]byte } // A FormatError reports that the input is not a valid PNG. type FormatError string func (e FormatError) Error() string { return "png: invalid format: " + string(e) } var chunkOrderError = FormatError("chunk out of order") // An UnsupportedError reports that the input uses a valid but unimplemented PNG feature. type UnsupportedError string func (e UnsupportedError) Error() string { return "png: unsupported feature: " + string(e) } func abs(x int) int { if x < 0 { return -x } return x } func min(a, b int) int { if a < b { return a } return b } func (d *decoder) parseIHDR(length uint32) error { if length != 13 { return FormatError("bad IHDR length") } if _, err := io.ReadFull(d.r, d.tmp[:13]); err != nil { return err } d.crc.Write(d.tmp[:13]) if d.tmp[10] != 0 || d.tmp[11] != 0 || d.tmp[12] != 0 { return UnsupportedError("compression, filter or interlace method") } w := int32(binary.BigEndian.Uint32(d.tmp[0:4])) h := int32(binary.BigEndian.Uint32(d.tmp[4:8])) if w < 0 || h < 0 { return FormatError("negative dimension") } nPixels := int64(w) * int64(h) if nPixels != int64(int(nPixels)) { return UnsupportedError("dimension overflow") } d.cb = cbInvalid d.depth = int(d.tmp[8]) switch d.depth { case 1: switch d.tmp[9] { case ctGrayscale: d.cb = cbG1 case ctPaletted: d.cb = cbP1 } case 2: switch d.tmp[9] { case ctGrayscale: d.cb = cbG2 case ctPaletted: d.cb = cbP2 } case 4: switch d.tmp[9] { case ctGrayscale: d.cb = cbG4 case ctPaletted: d.cb = cbP4 } case 8: switch d.tmp[9] { case ctGrayscale: d.cb = cbG8 case ctTrueColor: d.cb = cbTC8 case ctPaletted: d.cb = cbP8 case ctGrayscaleAlpha: d.cb = cbGA8 case ctTrueColorAlpha: d.cb = cbTCA8 } case 16: switch d.tmp[9] { case ctGrayscale: d.cb = cbG16 case ctTrueColor: d.cb = cbTC16 case ctGrayscaleAlpha: d.cb = cbGA16 case ctTrueColorAlpha: d.cb = cbTCA16 } } if d.cb == cbInvalid { return UnsupportedError(fmt.Sprintf("bit depth %d, color type %d", d.tmp[8], d.tmp[9])) } d.width, d.height = int(w), int(h) return d.verifyChecksum() } func (d *decoder) parsePLTE(length uint32) error { np := int(length / 3) // The number of palette entries. if length%3 != 0 || np <= 0 || np > 256 || np > 1< 256 { return FormatError("bad tRNS length") } n, err := io.ReadFull(d.r, d.tmp[:length]) if err != nil { return err } d.crc.Write(d.tmp[:n]) switch d.cb { case cbG8, cbG16: return UnsupportedError("grayscale transparency") case cbTC8, cbTC16: return UnsupportedError("truecolor transparency") case cbP1, cbP2, cbP4, cbP8: if n > len(d.palette) { return FormatError("bad tRNS length") } for i := 0; i < n; i++ { rgba := d.palette[i].(color.RGBA) d.palette[i] = color.RGBA{rgba.R, rgba.G, rgba.B, d.tmp[i]} } case cbGA8, cbGA16, cbTCA8, cbTCA16: return FormatError("tRNS, color type mismatch") } return d.verifyChecksum() } // The Paeth filter function, as per the PNG specification. func paeth(a, b, c uint8) uint8 { p := int(a) + int(b) - int(c) pa := abs(p - int(a)) pb := abs(p - int(b)) pc := abs(p - int(c)) if pa <= pb && pa <= pc { return a } else if pb <= pc { return b } return c } // Read presents one or more IDAT chunks as one continuous stream (minus the // intermediate chunk headers and footers). If the PNG data looked like: // ... len0 IDAT xxx crc0 len1 IDAT yy crc1 len2 IEND crc2 // then this reader presents xxxyy. For well-formed PNG data, the decoder state // immediately before the first Read call is that d.r is positioned between the // first IDAT and xxx, and the decoder state immediately after the last Read // call is that d.r is positioned between yy and crc1. func (d *decoder) Read(p []byte) (int, error) { if len(p) == 0 { return 0, nil } for d.idatLength == 0 { // We have exhausted an IDAT chunk. Verify the checksum of that chunk. if err := d.verifyChecksum(); err != nil { return 0, err } // Read the length and chunk type of the next chunk, and check that // it is an IDAT chunk. if _, err := io.ReadFull(d.r, d.tmp[:8]); err != nil { return 0, err } d.idatLength = binary.BigEndian.Uint32(d.tmp[:4]) if string(d.tmp[4:8]) != "IDAT" { return 0, FormatError("not enough pixel data") } d.crc.Reset() d.crc.Write(d.tmp[4:8]) } if int(d.idatLength) < 0 { return 0, UnsupportedError("IDAT chunk length overflow") } n, err := d.r.Read(p[:min(len(p), int(d.idatLength))]) d.crc.Write(p[:n]) d.idatLength -= uint32(n) return n, err } // decode decodes the IDAT data into an image. func (d *decoder) decode() (image.Image, error) { r, err := zlib.NewReader(d) if err != nil { return nil, err } defer r.Close() bitsPerPixel := 0 maxPalette := uint8(0) var ( gray *image.Gray rgba *image.RGBA paletted *image.Paletted nrgba *image.NRGBA gray16 *image.Gray16 rgba64 *image.RGBA64 nrgba64 *image.NRGBA64 img image.Image ) switch d.cb { case cbG1, cbG2, cbG4, cbG8: bitsPerPixel = d.depth gray = image.NewGray(image.Rect(0, 0, d.width, d.height)) img = gray case cbGA8: bitsPerPixel = 16 nrgba = image.NewNRGBA(image.Rect(0, 0, d.width, d.height)) img = nrgba case cbTC8: bitsPerPixel = 24 rgba = image.NewRGBA(image.Rect(0, 0, d.width, d.height)) img = rgba case cbP1, cbP2, cbP4, cbP8: bitsPerPixel = d.depth paletted = image.NewPaletted(image.Rect(0, 0, d.width, d.height), d.palette) img = paletted maxPalette = uint8(len(d.palette) - 1) case cbTCA8: bitsPerPixel = 32 nrgba = image.NewNRGBA(image.Rect(0, 0, d.width, d.height)) img = nrgba case cbG16: bitsPerPixel = 16 gray16 = image.NewGray16(image.Rect(0, 0, d.width, d.height)) img = gray16 case cbGA16: bitsPerPixel = 32 nrgba64 = image.NewNRGBA64(image.Rect(0, 0, d.width, d.height)) img = nrgba64 case cbTC16: bitsPerPixel = 48 rgba64 = image.NewRGBA64(image.Rect(0, 0, d.width, d.height)) img = rgba64 case cbTCA16: bitsPerPixel = 64 nrgba64 = image.NewNRGBA64(image.Rect(0, 0, d.width, d.height)) img = nrgba64 } bytesPerPixel := (bitsPerPixel + 7) / 8 // cr and pr are the bytes for the current and previous row. // The +1 is for the per-row filter type, which is at cr[0]. cr := make([]uint8, 1+(bitsPerPixel*d.width+7)/8) pr := make([]uint8, 1+(bitsPerPixel*d.width+7)/8) for y := 0; y < d.height; y++ { // Read the decompressed bytes. _, err := io.ReadFull(r, cr) if err != nil { return nil, err } // Apply the filter. cdat := cr[1:] pdat := pr[1:] switch cr[0] { case ftNone: // No-op. case ftSub: for i := bytesPerPixel; i < len(cdat); i++ { cdat[i] += cdat[i-bytesPerPixel] } case ftUp: for i := 0; i < len(cdat); i++ { cdat[i] += pdat[i] } case ftAverage: for i := 0; i < bytesPerPixel; i++ { cdat[i] += pdat[i] / 2 } for i := bytesPerPixel; i < len(cdat); i++ { cdat[i] += uint8((int(cdat[i-bytesPerPixel]) + int(pdat[i])) / 2) } case ftPaeth: for i := 0; i < bytesPerPixel; i++ { cdat[i] += paeth(0, pdat[i], 0) } for i := bytesPerPixel; i < len(cdat); i++ { cdat[i] += paeth(cdat[i-bytesPerPixel], pdat[i], pdat[i-bytesPerPixel]) } default: return nil, FormatError("bad filter type") } // Convert from bytes to colors. switch d.cb { case cbG1: for x := 0; x < d.width; x += 8 { b := cdat[x/8] for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ { gray.SetGray(x+x2, y, color.Gray{(b >> 7) * 0xff}) b <<= 1 } } case cbG2: for x := 0; x < d.width; x += 4 { b := cdat[x/4] for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ { gray.SetGray(x+x2, y, color.Gray{(b >> 6) * 0x55}) b <<= 2 } } case cbG4: for x := 0; x < d.width; x += 2 { b := cdat[x/2] for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ { gray.SetGray(x+x2, y, color.Gray{(b >> 4) * 0x11}) b <<= 4 } } case cbG8: for x := 0; x < d.width; x++ { gray.SetGray(x, y, color.Gray{cdat[x]}) } case cbGA8: for x := 0; x < d.width; x++ { ycol := cdat[2*x+0] nrgba.SetNRGBA(x, y, color.NRGBA{ycol, ycol, ycol, cdat[2*x+1]}) } case cbTC8: for x := 0; x < d.width; x++ { rgba.SetRGBA(x, y, color.RGBA{cdat[3*x+0], cdat[3*x+1], cdat[3*x+2], 0xff}) } case cbP1: for x := 0; x < d.width; x += 8 { b := cdat[x/8] for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ { idx := b >> 7 if idx > maxPalette { return nil, FormatError("palette index out of range") } paletted.SetColorIndex(x+x2, y, idx) b <<= 1 } } case cbP2: for x := 0; x < d.width; x += 4 { b := cdat[x/4] for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ { idx := b >> 6 if idx > maxPalette { return nil, FormatError("palette index out of range") } paletted.SetColorIndex(x+x2, y, idx) b <<= 2 } } case cbP4: for x := 0; x < d.width; x += 2 { b := cdat[x/2] for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ { idx := b >> 4 if idx > maxPalette { return nil, FormatError("palette index out of range") } paletted.SetColorIndex(x+x2, y, idx) b <<= 4 } } case cbP8: for x := 0; x < d.width; x++ { if cdat[x] > maxPalette { return nil, FormatError("palette index out of range") } paletted.SetColorIndex(x, y, cdat[x]) } case cbTCA8: for x := 0; x < d.width; x++ { nrgba.SetNRGBA(x, y, color.NRGBA{cdat[4*x+0], cdat[4*x+1], cdat[4*x+2], cdat[4*x+3]}) } case cbG16: for x := 0; x < d.width; x++ { ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1]) gray16.SetGray16(x, y, color.Gray16{ycol}) } case cbGA16: for x := 0; x < d.width; x++ { ycol := uint16(cdat[4*x+0])<<8 | uint16(cdat[4*x+1]) acol := uint16(cdat[4*x+2])<<8 | uint16(cdat[4*x+3]) nrgba64.SetNRGBA64(x, y, color.NRGBA64{ycol, ycol, ycol, acol}) } case cbTC16: for x := 0; x < d.width; x++ { rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1]) gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3]) bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5]) rgba64.SetRGBA64(x, y, color.RGBA64{rcol, gcol, bcol, 0xffff}) } case cbTCA16: for x := 0; x < d.width; x++ { rcol := uint16(cdat[8*x+0])<<8 | uint16(cdat[8*x+1]) gcol := uint16(cdat[8*x+2])<<8 | uint16(cdat[8*x+3]) bcol := uint16(cdat[8*x+4])<<8 | uint16(cdat[8*x+5]) acol := uint16(cdat[8*x+6])<<8 | uint16(cdat[8*x+7]) nrgba64.SetNRGBA64(x, y, color.NRGBA64{rcol, gcol, bcol, acol}) } } // The current row for y is the previous row for y+1. pr, cr = cr, pr } // Check for EOF, to verify the zlib checksum. n, err := r.Read(pr[:1]) if err != io.EOF { return nil, FormatError(err.Error()) } if n != 0 || d.idatLength != 0 { return nil, FormatError("too much pixel data") } return img, nil } func (d *decoder) parseIDAT(length uint32) (err error) { d.idatLength = length d.img, err = d.decode() if err != nil { return err } return d.verifyChecksum() } func (d *decoder) parseIEND(length uint32) error { if length != 0 { return FormatError("bad IEND length") } return d.verifyChecksum() } func (d *decoder) parseChunk() error { // Read the length and chunk type. n, err := io.ReadFull(d.r, d.tmp[:8]) if err != nil { return err } length := binary.BigEndian.Uint32(d.tmp[:4]) d.crc.Reset() d.crc.Write(d.tmp[4:8]) // Read the chunk data. switch string(d.tmp[4:8]) { case "IHDR": if d.stage != dsStart { return chunkOrderError } d.stage = dsSeenIHDR return d.parseIHDR(length) case "PLTE": if d.stage != dsSeenIHDR { return chunkOrderError } d.stage = dsSeenPLTE return d.parsePLTE(length) case "tRNS": if d.stage != dsSeenPLTE { return chunkOrderError } return d.parsetRNS(length) case "IDAT": if d.stage < dsSeenIHDR || d.stage > dsSeenIDAT || (d.cb == cbP8 && d.stage == dsSeenIHDR) { return chunkOrderError } d.stage = dsSeenIDAT return d.parseIDAT(length) case "IEND": if d.stage != dsSeenIDAT { return chunkOrderError } d.stage = dsSeenIEND return d.parseIEND(length) } // Ignore this chunk (of a known length). var ignored [4096]byte for length > 0 { n, err = io.ReadFull(d.r, ignored[:min(len(ignored), int(length))]) if err != nil { return err } d.crc.Write(ignored[:n]) length -= uint32(n) } return d.verifyChecksum() } func (d *decoder) verifyChecksum() error { if _, err := io.ReadFull(d.r, d.tmp[:4]); err != nil { return err } if binary.BigEndian.Uint32(d.tmp[:4]) != d.crc.Sum32() { return FormatError("invalid checksum") } return nil } func (d *decoder) checkHeader() error { _, err := io.ReadFull(d.r, d.tmp[:len(pngHeader)]) if err != nil { return err } if string(d.tmp[:len(pngHeader)]) != pngHeader { return FormatError("not a PNG file") } return nil } // Decode reads a PNG image from r and returns it as an image.Image. // The type of Image returned depends on the PNG contents. func Decode(r io.Reader) (image.Image, error) { d := &decoder{ r: r, crc: crc32.NewIEEE(), } if err := d.checkHeader(); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } return nil, err } for d.stage != dsSeenIEND { if err := d.parseChunk(); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } return nil, err } } return d.img, nil } // DecodeConfig returns the color model and dimensions of a PNG image without // decoding the entire image. func DecodeConfig(r io.Reader) (image.Config, error) { d := &decoder{ r: r, crc: crc32.NewIEEE(), } if err := d.checkHeader(); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } return image.Config{}, err } for { if err := d.parseChunk(); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } return image.Config{}, err } if d.stage == dsSeenIHDR && d.cb != cbP8 { break } if d.stage == dsSeenPLTE && d.cb == cbP8 { break } } var cm color.Model switch d.cb { case cbG1, cbG2, cbG4, cbG8: cm = color.GrayModel case cbGA8: cm = color.NRGBAModel case cbTC8: cm = color.RGBAModel case cbP1, cbP2, cbP4, cbP8: cm = d.palette case cbTCA8: cm = color.NRGBAModel case cbG16: cm = color.Gray16Model case cbGA16: cm = color.NRGBA64Model case cbTC16: cm = color.RGBA64Model case cbTCA16: cm = color.NRGBA64Model } return image.Config{ ColorModel: cm, Width: d.width, Height: d.height, }, nil } func init() { image.RegisterFormat("png", pngHeader, Decode, DecodeConfig) }