/* Implementation of the MAXLOC intrinsic Copyright (C) 2017-2018 Free Software Foundation, Inc. Contributed by Thomas Koenig This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include #include #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4) static inline int compare_fcn (const GFC_INTEGER_4 *a, const GFC_INTEGER_4 *b, gfc_charlen_type n) { if (sizeof (GFC_INTEGER_4) == 1) return memcmp (a, b, n); else return memcmp_char4 (a, b, n); } #define INITVAL 255 extern void minval0_s4 (GFC_INTEGER_4 * restrict, gfc_charlen_type, gfc_array_s4 * const restrict array, gfc_charlen_type); export_proto(minval0_s4); void minval0_s4 (GFC_INTEGER_4 * restrict ret, gfc_charlen_type xlen, gfc_array_s4 * const restrict array, gfc_charlen_type len) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; const GFC_INTEGER_4 *base; index_type rank; index_type n; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); assert (xlen == len); /* Initialize return value. */ memset (ret, INITVAL, sizeof(*ret) * len); for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) return; } base = array->base_addr; { const GFC_INTEGER_4 *retval; retval = ret; while (base) { do { /* Implementation start. */ if (compare_fcn (base, retval, len) < 0) { retval = base; } /* Implementation end. */ /* Advance to the next element. */ base += sstride[0]; } while (++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; n++; if (n >= rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; } } while (count[n] == extent[n]); } memcpy (ret, retval, len * sizeof (*ret)); } } extern void mminval0_s4 (GFC_INTEGER_4 * restrict, gfc_charlen_type, gfc_array_s4 * const restrict array, gfc_array_l1 * const restrict mask, gfc_charlen_type len); export_proto(mminval0_s4); void mminval0_s4 (GFC_INTEGER_4 * const restrict ret, gfc_charlen_type xlen, gfc_array_s4 * const restrict array, gfc_array_l1 * const restrict mask, gfc_charlen_type len) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; const GFC_INTEGER_4 *base; GFC_LOGICAL_1 *mbase; int rank; index_type n; int mask_kind; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); assert (xlen == len); /* Initialize return value. */ memset (ret, INITVAL, sizeof(*ret) * len); mask_kind = GFC_DESCRIPTOR_SIZE (mask); mbase = mask->base_addr; if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) return; } base = array->base_addr; { const GFC_INTEGER_4 *retval; retval = ret; while (base) { do { /* Implementation start. */ if (*mbase && compare_fcn (base, retval, len) < 0) { retval = base; } /* Implementation end. */ /* Advance to the next element. */ base += sstride[0]; mbase += mstride[0]; } while (++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; n++; if (n >= rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; } } while (count[n] == extent[n]); } memcpy (ret, retval, len * sizeof (*ret)); } } extern void sminval0_s4 (GFC_INTEGER_4 * restrict, gfc_charlen_type, gfc_array_s4 * const restrict array, GFC_LOGICAL_4 *, gfc_charlen_type); export_proto(sminval0_s4); void sminval0_s4 (GFC_INTEGER_4 * restrict ret, gfc_charlen_type xlen, gfc_array_s4 * const restrict array, GFC_LOGICAL_4 *mask, gfc_charlen_type len) { if (*mask) { minval0_s4 (ret, xlen, array, len); return; } memset (ret, INITVAL, sizeof (*ret) * len); } #endif