// { dg-options "-DNTESTS=1 -DNSTRINGS=100 -DSTRSIZE=21" { target simulator } } // { dg-do run { target c++11 } } // Copyright (C) 2010-2018 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this library; see the file COPYING3. If not see // . #include #include #include #include #include #include using namespace std; #ifndef NTESTS #define NTESTS 5 #endif #ifndef NSTRINGS #define NSTRINGS 200 #endif #ifndef STRSIZE #define STRSIZE 42 #endif const unsigned int num_quality_tests = NTESTS; const unsigned int num_strings_for_quality_tests = NSTRINGS; const unsigned int string_size = STRSIZE; vector random_strings(unsigned int n, unsigned int len) { string s(len, '\0'); unordered_set result_set; while (result_set.size() < n) { result_set.insert(s); unsigned int tmp = rand(); tmp %= len * 256; s[tmp / 256] = tmp % 256; } return vector(result_set.begin(), result_set.end()); } double score_from_varying_position(string s, unsigned int index) { unsigned int bits_in_hash_code = sizeof(size_t) * 8; // We'll iterate through all 256 vals for s[index], leaving the rest // of s fixed. Then, for example, out of the 128 times that // s[index] has its 3rd bit equal to 0 we would like roughly half 1s // and half 0s in bit 9 of the hash codes. // // Bookkeeping: Conceptually we want a 3D array of ints. We want to // count the number of times each output position (of which there are // bits_in_hash_code) is 1 for each bit position within s[index] (of // which there are 8) and value of that bit (of which there are 2). const unsigned int jj = 2; const unsigned int kk = jj * bits_in_hash_code; const unsigned int array_size = 8 * kk; vector ones(array_size, 0); for (int i = 0; i < 256; i++) { s[index] = i; size_t h = hash()(s); for (int j = 0; h != 0; j++, h >>= 1) { if (h & 1) { for (int k = 0; k < 8; k++) ++ones[k * kk + j * jj + ((i >> k) & 1)]; } } } // At most, the innermost statement in the above loop nest can // execute 256 * bits_in_hash_code * 8 times. If the hash is good, // it'll execute about half that many times, with a pretty even // spread across the elements of ones[]. VERIFY( 256 * bits_in_hash_code * 8 / array_size == 128 ); int max_ones_possible = 128; int good = 0, bad = 0; for (int bit = 0; bit <= 1; bit++) { for (unsigned int j = 0; j < bits_in_hash_code; j++) { for (int bitpos = 0; bitpos < 8; bitpos++) { int z = ones[bitpos * kk + j * jj + bit]; if (z <= max_ones_possible / 6 || z >= max_ones_possible * 5 / 6) { // The hash function screwed up, or was just unlucky, // as 128 flips of a perfect coin occasionally yield // far from 64 heads. bad++; } else good++; } } } return good / (double)(good + bad); } double score_from_varying_position(const vector& v, unsigned int index) { double score = 0; for (unsigned int i = 0; i < v.size(); i++) score += score_from_varying_position(v[i], index); return score / v.size(); } double quality_test(unsigned int num_strings, unsigned int string_size) { // Construct random strings. vector v = random_strings(num_strings, string_size); double sum_of_scores = 0; for (unsigned int i = 0; i < string_size; i++) sum_of_scores += score_from_varying_position(v, i); // A good hash function should have a score very close to 1, and a bad // hash function will have a score close to 0. return sum_of_scores / string_size; } void quality_test() { srand(137); double sum_of_scores = 0; for (unsigned int i = 0; i < num_quality_tests; i++) { double score = quality_test(num_strings_for_quality_tests, string_size); sum_of_scores += score; VERIFY( score > 0.99 ); } if (num_quality_tests > 1) { double mean_quality = sum_of_scores / num_quality_tests; VERIFY( mean_quality > 0.9999 ); } } int main() { quality_test(); return 0; }