/* Copyright (C) 2010-2019 Free Software Foundation, Inc. Contributed by Bernd Schmidt . This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ ;; ABI considerations for the divide functions ;; The following registers are call-used: ;; __c6xabi_divi A0,A1,A2,A4,A6,B0,B1,B2,B4,B5 ;; __c6xabi_divu A0,A1,A2,A4,A6,B0,B1,B2,B4 ;; __c6xabi_remi A1,A2,A4,A5,A6,B0,B1,B2,B4 ;; __c6xabi_remu A1,A4,A5,A7,B0,B1,B2,B4 ;; ;; In our implementation, divu and remu are leaf functions, ;; while both divi and remi call into divu. ;; A0 is not clobbered by any of the functions. ;; divu does not clobber B2 either, which is taken advantage of ;; in remi. ;; divi uses B5 to hold the original return address during ;; the call to divu. ;; remi uses B2 and A5 to hold the input values during the ;; call to divu. It stores B3 in on the stack. #ifdef L_divsi3 .text .align 2 .global __c6xabi_divi .hidden __c6xabi_divi .type __c6xabi_divi, STT_FUNC __c6xabi_divi: call .s2 __c6xabi_divu || mv .d2 B3, B5 || cmpgt .l1 0, A4, A1 || cmpgt .l2 0, B4, B1 [A1] neg .l1 A4, A4 || [B1] neg .l2 B4, B4 || xor .s1x A1, B1, A1 #ifdef _TMS320C6400 [A1] addkpc .s2 1f, B3, 4 #else [A1] mvkl .s2 1f, B3 [A1] mvkh .s2 1f, B3 nop 2 #endif 1: neg .l1 A4, A4 || mv .l2 B3,B5 || ret .s2 B5 nop 5 #endif #if defined L_modsi3 || defined L_divmodsi4 .align 2 #ifdef L_modsi3 #define MOD_OUTPUT_REG A4 .global __c6xabi_remi .hidden __c6xabi_remi .type __c6xabi_remi, STT_FUNC #else #define MOD_OUTPUT_REG A5 .global __c6xabi_divremi .hidden __c6xabi_divremi .type __c6xabi_divremi, STT_FUNC __c6xabi_divremi: #endif __c6xabi_remi: stw .d2t2 B3, *B15--[2] || cmpgt .l1 0, A4, A1 || cmpgt .l2 0, B4, B2 || mv .s1 A4, A5 || call .s2 __c6xabi_divu [A1] neg .l1 A4, A4 || [B2] neg .l2 B4, B4 || xor .s2x B2, A1, B0 || mv .d2 B4, B2 #ifdef _TMS320C6400 [B0] addkpc .s2 1f, B3, 1 [!B0] addkpc .s2 2f, B3, 1 nop 2 #else [B0] mvkl .s2 1f,B3 [!B0] mvkl .s2 2f,B3 [B0] mvkh .s2 1f,B3 [!B0] mvkh .s2 2f,B3 #endif 1: neg .l1 A4, A4 2: ldw .d2t2 *++B15[2], B3 #ifdef _TMS320C6400_PLUS mpy32 .m1x A4, B2, A6 nop 3 ret .s2 B3 sub .l1 A5, A6, MOD_OUTPUT_REG nop 4 #else mpyu .m1x A4, B2, A1 nop 1 mpylhu .m1x A4, B2, A6 || mpylhu .m2x B2, A4, B2 nop 1 add .l1x A6, B2, A6 || ret .s2 B3 shl .s1 A6, 16, A6 add .d1 A6, A1, A6 sub .l1 A5, A6, MOD_OUTPUT_REG nop 2 #endif #endif #if defined L_udivsi3 || defined L_udivmodsi4 .align 2 #ifdef L_udivsi3 .global __c6xabi_divu .hidden __c6xabi_divu .type __c6xabi_divu, STT_FUNC __c6xabi_divu: #else .global __c6xabi_divremu .hidden __c6xabi_divremu .type __c6xabi_divremu, STT_FUNC __c6xabi_divremu: #endif ;; We use a series of up to 31 subc instructions. First, we find ;; out how many leading zero bits there are in the divisor. This ;; gives us both a shift count for aligning (shifting) the divisor ;; to the, and the number of times we have to execute subc. ;; At the end, we have both the remainder and most of the quotient ;; in A4. The top bit of the quotient is computed first and is ;; placed in A2. ;; Return immediately if the dividend is zero. Setting B4 to 1 ;; is a trick to allow us to leave the following insns in the jump ;; delay slot without affecting the result. mv .s2x A4, B1 #ifndef _TMS320C6400 [!b1] mvk .s2 1, B4 #endif [b1] lmbd .l2 1, B4, B1 ||[!b1] b .s2 B3 ; RETURN A #ifdef _TMS320C6400 ||[!b1] mvk .d2 1, B4 #endif #ifdef L_udivmodsi4 ||[!b1] zero .s1 A5 #endif mv .l1x B1, A6 || shl .s2 B4, B1, B4 ;; The loop performs a maximum of 28 steps, so we do the ;; first 3 here. cmpltu .l1x A4, B4, A2 [!A2] sub .l1x A4, B4, A4 || shru .s2 B4, 1, B4 || xor .s1 1, A2, A2 shl .s1 A2, 31, A2 || [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 ;; RETURN A may happen here (note: must happen before the next branch) 0: cmpgt .l2 B1, 7, B0 || [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 || [b0] b .s1 0b [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 ;; loop backwards branch happens here ret .s2 B3 || mvk .s1 32, A1 sub .l1 A1, A6, A6 #ifdef L_udivmodsi4 || extu .s1 A4, A6, A5 #endif shl .s1 A4, A6, A4 shru .s1 A4, 1, A4 || sub .l1 A6, 1, A6 or .l1 A2, A4, A4 shru .s1 A4, A6, A4 nop #endif #ifdef L_umodsi3 .align 2 .global __c6xabi_remu .hidden __c6xabi_remu .type __c6xabi_remu, STT_FUNC __c6xabi_remu: ;; The ABI seems designed to prevent these functions calling each other, ;; so we duplicate most of the divsi3 code here. mv .s2x A4, B1 #ifndef _TMS320C6400 [!b1] mvk .s2 1, B4 #endif lmbd .l2 1, B4, B1 ||[!b1] b .s2 B3 ; RETURN A #ifdef _TMS320C6400 ||[!b1] mvk .d2 1, B4 #endif mv .l1x B1, A7 || shl .s2 B4, B1, B4 cmpltu .l1x A4, B4, A1 [!a1] sub .l1x A4, B4, A4 shru .s2 B4, 1, B4 0: cmpgt .l2 B1, 7, B0 || [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 ;; RETURN A may happen here (note: must happen before the next branch) [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 || [b0] b .s1 0b [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 ;; loop backwards branch happens here ret .s2 B3 [b1] subc .l1x A4,B4,A4 || [b1] add .s2 -1, B1, B1 [b1] subc .l1x A4,B4,A4 extu .s1 A4, A7, A4 nop 2 #endif #if defined L_strasgi_64plus && defined _TMS320C6400_PLUS .align 2 .global __c6xabi_strasgi_64plus .hidden __c6xabi_strasgi_64plus .type __c6xabi_strasgi_64plus, STT_FUNC __c6xabi_strasgi_64plus: shru .s2x a6, 2, b31 || mv .s1 a4, a30 || mv .d2 b4, b30 add .s2 -4, b31, b31 sploopd 1 || mvc .s2 b31, ilc ldw .d2t2 *b30++, b31 nop 4 mv .s1x b31,a31 spkernel 6, 0 || stw .d1t1 a31, *a30++ ret .s2 b3 nop 5 #endif #ifdef L_strasgi .global __c6xabi_strasgi .type __c6xabi_strasgi, STT_FUNC __c6xabi_strasgi: ;; This is essentially memcpy, with alignment known to be at least ;; 4, and the size a multiple of 4 greater than or equal to 28. ldw .d2t1 *B4++, A0 || mvk .s2 16, B1 ldw .d2t1 *B4++, A1 || mvk .s2 20, B2 || sub .d1 A6, 24, A6 ldw .d2t1 *B4++, A5 ldw .d2t1 *B4++, A7 || mv .l2x A6, B7 ldw .d2t1 *B4++, A8 ldw .d2t1 *B4++, A9 || mv .s2x A0, B5 || cmpltu .l2 B2, B7, B0 0: stw .d1t2 B5, *A4++ ||[b0] ldw .d2t1 *B4++, A0 || mv .s2x A1, B5 || mv .l2 B7, B6 [b0] sub .d2 B6, 24, B7 ||[b0] b .s2 0b || cmpltu .l2 B1, B6, B0 [b0] ldw .d2t1 *B4++, A1 || stw .d1t2 B5, *A4++ || mv .s2x A5, B5 || cmpltu .l2 12, B6, B0 [b0] ldw .d2t1 *B4++, A5 || stw .d1t2 B5, *A4++ || mv .s2x A7, B5 || cmpltu .l2 8, B6, B0 [b0] ldw .d2t1 *B4++, A7 || stw .d1t2 B5, *A4++ || mv .s2x A8, B5 || cmpltu .l2 4, B6, B0 [b0] ldw .d2t1 *B4++, A8 || stw .d1t2 B5, *A4++ || mv .s2x A9, B5 || cmpltu .l2 0, B6, B0 [b0] ldw .d2t1 *B4++, A9 || stw .d1t2 B5, *A4++ || mv .s2x A0, B5 || cmpltu .l2 B2, B7, B0 ;; loop back branch happens here cmpltu .l2 B1, B6, B0 || ret .s2 b3 [b0] stw .d1t1 A1, *A4++ || cmpltu .l2 12, B6, B0 [b0] stw .d1t1 A5, *A4++ || cmpltu .l2 8, B6, B0 [b0] stw .d1t1 A7, *A4++ || cmpltu .l2 4, B6, B0 [b0] stw .d1t1 A8, *A4++ || cmpltu .l2 0, B6, B0 [b0] stw .d1t1 A9, *A4++ ;; return happens here #endif #ifdef _TMS320C6400_PLUS #ifdef L_push_rts .align 2 .global __c6xabi_push_rts .hidden __c6xabi_push_rts .type __c6xabi_push_rts, STT_FUNC __c6xabi_push_rts: stw .d2t2 B14, *B15--[2] stdw .d2t1 A15:A14, *B15-- || b .s2x A3 stdw .d2t2 B13:B12, *B15-- stdw .d2t1 A13:A12, *B15-- stdw .d2t2 B11:B10, *B15-- stdw .d2t1 A11:A10, *B15-- stdw .d2t2 B3:B2, *B15-- #endif #ifdef L_pop_rts .align 2 .global __c6xabi_pop_rts .hidden __c6xabi_pop_rts .type __c6xabi_pop_rts, STT_FUNC __c6xabi_pop_rts: lddw .d2t2 *++B15, B3:B2 lddw .d2t1 *++B15, A11:A10 lddw .d2t2 *++B15, B11:B10 lddw .d2t1 *++B15, A13:A12 lddw .d2t2 *++B15, B13:B12 lddw .d2t1 *++B15, A15:A14 || b .s2 B3 ldw .d2t2 *++B15[2], B14 nop 4 #endif #ifdef L_call_stub .align 2 .global __c6xabi_call_stub .type __c6xabi_call_stub, STT_FUNC __c6xabi_call_stub: stw .d2t1 A2, *B15--[2] stdw .d2t1 A7:A6, *B15-- || call .s2 B31 stdw .d2t1 A1:A0, *B15-- stdw .d2t2 B7:B6, *B15-- stdw .d2t2 B5:B4, *B15-- stdw .d2t2 B1:B0, *B15-- stdw .d2t2 B3:B2, *B15-- || addkpc .s2 1f, B3, 0 1: lddw .d2t2 *++B15, B3:B2 lddw .d2t2 *++B15, B1:B0 lddw .d2t2 *++B15, B5:B4 lddw .d2t2 *++B15, B7:B6 lddw .d2t1 *++B15, A1:A0 lddw .d2t1 *++B15, A7:A6 || b .s2 B3 ldw .d2t1 *++B15[2], A2 nop 4 #endif #endif