/* Implementation of the PARITY intrinsic Copyright (C) 2010-2018 Free Software Foundation, Inc. Contributed by Tobias Burnus This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #if defined (HAVE_GFC_LOGICAL_2) && defined (HAVE_GFC_LOGICAL_2) extern void parity_l2 (gfc_array_l2 * const restrict, gfc_array_l2 * const restrict, const index_type * const restrict); export_proto(parity_l2); void parity_l2 (gfc_array_l2 * const restrict retarray, gfc_array_l2 * const restrict array, const index_type * const restrict pdim) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; const GFC_LOGICAL_2 * restrict base; GFC_LOGICAL_2 * restrict dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; int continue_loop; #ifdef HAVE_BACK_ARG assert(back == 0); #endif /* Make dim zero based to avoid confusion. */ rank = GFC_DESCRIPTOR_RANK (array) - 1; dim = (*pdim) - 1; if (unlikely (dim < 0 || dim > rank)) { runtime_error ("Dim argument incorrect in PARITY intrinsic: " "is %ld, should be between 1 and %ld", (long int) dim + 1, (long int) rank + 1); } len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len < 0) len = 0; delta = GFC_DESCRIPTOR_STRIDE(array,dim); for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); if (extent[n] < 0) extent[n] = 0; } if (retarray->base_addr == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } retarray->offset = 0; retarray->dtype.rank = rank; alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_LOGICAL_2)); if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in" " PARITY intrinsic: is %ld, should be %ld", (long int) (GFC_DESCRIPTOR_RANK (retarray)), (long int) rank); if (unlikely (compile_options.bounds_check)) bounds_ifunction_return ((array_t *) retarray, extent, "return value", "PARITY"); } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) return; } base = array->base_addr; dest = retarray->base_addr; continue_loop = 1; while (continue_loop) { const GFC_LOGICAL_2 * restrict src; GFC_LOGICAL_2 result; src = base; { result = 0; if (len <= 0) *dest = 0; else { for (n = 0; n < len; n++, src += delta) { result = result != *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n >= rank) { /* Break out of the loop. */ continue_loop = 0; break; } else { count[n]++; base += sstride[n]; dest += dstride[n]; } } } } #endif