//===-- tsan_platform_mac.cc ----------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Mac-specific code. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #if SANITIZER_MAC #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_posix.h" #include "sanitizer_common/sanitizer_procmaps.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_flags.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace __tsan { #if !SANITIZER_GO static void *SignalSafeGetOrAllocate(uptr *dst, uptr size) { atomic_uintptr_t *a = (atomic_uintptr_t *)dst; void *val = (void *)atomic_load_relaxed(a); atomic_signal_fence(memory_order_acquire); // Turns the previous load into // acquire wrt signals. if (UNLIKELY(val == nullptr)) { val = (void *)internal_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); CHECK(val); void *cmp = nullptr; if (!atomic_compare_exchange_strong(a, (uintptr_t *)&cmp, (uintptr_t)val, memory_order_acq_rel)) { internal_munmap(val, size); val = cmp; } } return val; } // On OS X, accessing TLVs via __thread or manually by using pthread_key_* is // problematic, because there are several places where interceptors are called // when TLVs are not accessible (early process startup, thread cleanup, ...). // The following provides a "poor man's TLV" implementation, where we use the // shadow memory of the pointer returned by pthread_self() to store a pointer to // the ThreadState object. The main thread's ThreadState is stored separately // in a static variable, because we need to access it even before the // shadow memory is set up. static uptr main_thread_identity = 0; ALIGNED(64) static char main_thread_state[sizeof(ThreadState)]; ThreadState **cur_thread_location() { ThreadState **thread_identity = (ThreadState **)pthread_self(); return ((uptr)thread_identity == main_thread_identity) ? nullptr : thread_identity; } ThreadState *cur_thread() { ThreadState **thr_state_loc = cur_thread_location(); if (thr_state_loc == nullptr || main_thread_identity == 0) { return (ThreadState *)&main_thread_state; } ThreadState **fake_tls = (ThreadState **)MemToShadow((uptr)thr_state_loc); ThreadState *thr = (ThreadState *)SignalSafeGetOrAllocate( (uptr *)fake_tls, sizeof(ThreadState)); return thr; } // TODO(kuba.brecka): This is not async-signal-safe. In particular, we call // munmap first and then clear `fake_tls`; if we receive a signal in between, // handler will try to access the unmapped ThreadState. void cur_thread_finalize() { ThreadState **thr_state_loc = cur_thread_location(); if (thr_state_loc == nullptr) { // Calling dispatch_main() or xpc_main() actually invokes pthread_exit to // exit the main thread. Let's keep the main thread's ThreadState. return; } ThreadState **fake_tls = (ThreadState **)MemToShadow((uptr)thr_state_loc); internal_munmap(*fake_tls, sizeof(ThreadState)); *fake_tls = nullptr; } #endif void FlushShadowMemory() { } static void RegionMemUsage(uptr start, uptr end, uptr *res, uptr *dirty) { vm_address_t address = start; vm_address_t end_address = end; uptr resident_pages = 0; uptr dirty_pages = 0; while (address < end_address) { vm_size_t vm_region_size; mach_msg_type_number_t count = VM_REGION_EXTENDED_INFO_COUNT; vm_region_extended_info_data_t vm_region_info; mach_port_t object_name; kern_return_t ret = vm_region_64( mach_task_self(), &address, &vm_region_size, VM_REGION_EXTENDED_INFO, (vm_region_info_t)&vm_region_info, &count, &object_name); if (ret != KERN_SUCCESS) break; resident_pages += vm_region_info.pages_resident; dirty_pages += vm_region_info.pages_dirtied; address += vm_region_size; } *res = resident_pages * GetPageSizeCached(); *dirty = dirty_pages * GetPageSizeCached(); } void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) { uptr shadow_res, shadow_dirty; uptr meta_res, meta_dirty; uptr trace_res, trace_dirty; RegionMemUsage(ShadowBeg(), ShadowEnd(), &shadow_res, &shadow_dirty); RegionMemUsage(MetaShadowBeg(), MetaShadowEnd(), &meta_res, &meta_dirty); RegionMemUsage(TraceMemBeg(), TraceMemEnd(), &trace_res, &trace_dirty); #if !SANITIZER_GO uptr low_res, low_dirty; uptr high_res, high_dirty; uptr heap_res, heap_dirty; RegionMemUsage(LoAppMemBeg(), LoAppMemEnd(), &low_res, &low_dirty); RegionMemUsage(HiAppMemBeg(), HiAppMemEnd(), &high_res, &high_dirty); RegionMemUsage(HeapMemBeg(), HeapMemEnd(), &heap_res, &heap_dirty); #else // !SANITIZER_GO uptr app_res, app_dirty; RegionMemUsage(AppMemBeg(), AppMemEnd(), &app_res, &app_dirty); #endif StackDepotStats *stacks = StackDepotGetStats(); internal_snprintf(buf, buf_size, "shadow (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" "meta (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" "traces (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" #if !SANITIZER_GO "low app (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" "high app (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" "heap (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" #else // !SANITIZER_GO "app (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n" #endif "stacks: %zd unique IDs, %zd kB allocated\n" "threads: %zd total, %zd live\n" "------------------------------\n", ShadowBeg(), ShadowEnd(), shadow_res / 1024, shadow_dirty / 1024, MetaShadowBeg(), MetaShadowEnd(), meta_res / 1024, meta_dirty / 1024, TraceMemBeg(), TraceMemEnd(), trace_res / 1024, trace_dirty / 1024, #if !SANITIZER_GO LoAppMemBeg(), LoAppMemEnd(), low_res / 1024, low_dirty / 1024, HiAppMemBeg(), HiAppMemEnd(), high_res / 1024, high_dirty / 1024, HeapMemBeg(), HeapMemEnd(), heap_res / 1024, heap_dirty / 1024, #else // !SANITIZER_GO AppMemBeg(), AppMemEnd(), app_res / 1024, app_dirty / 1024, #endif stacks->n_uniq_ids, stacks->allocated / 1024, nthread, nlive); } #if !SANITIZER_GO void InitializeShadowMemoryPlatform() { } // On OS X, GCD worker threads are created without a call to pthread_create. We // need to properly register these threads with ThreadCreate and ThreadStart. // These threads don't have a parent thread, as they are created "spuriously". // We're using a libpthread API that notifies us about a newly created thread. // The `thread == pthread_self()` check indicates this is actually a worker // thread. If it's just a regular thread, this hook is called on the parent // thread. typedef void (*pthread_introspection_hook_t)(unsigned int event, pthread_t thread, void *addr, size_t size); extern "C" pthread_introspection_hook_t pthread_introspection_hook_install( pthread_introspection_hook_t hook); static const uptr PTHREAD_INTROSPECTION_THREAD_CREATE = 1; static const uptr PTHREAD_INTROSPECTION_THREAD_TERMINATE = 3; static pthread_introspection_hook_t prev_pthread_introspection_hook; static void my_pthread_introspection_hook(unsigned int event, pthread_t thread, void *addr, size_t size) { if (event == PTHREAD_INTROSPECTION_THREAD_CREATE) { if (thread == pthread_self()) { // The current thread is a newly created GCD worker thread. ThreadState *thr = cur_thread(); Processor *proc = ProcCreate(); ProcWire(proc, thr); ThreadState *parent_thread_state = nullptr; // No parent. int tid = ThreadCreate(parent_thread_state, 0, (uptr)thread, true); CHECK_NE(tid, 0); ThreadStart(thr, tid, GetTid(), /*workerthread*/ true); } } else if (event == PTHREAD_INTROSPECTION_THREAD_TERMINATE) { if (thread == pthread_self()) { ThreadState *thr = cur_thread(); if (thr->tctx) { DestroyThreadState(); } } } if (prev_pthread_introspection_hook != nullptr) prev_pthread_introspection_hook(event, thread, addr, size); } #endif void InitializePlatformEarly() { #if defined(__aarch64__) uptr max_vm = GetMaxVirtualAddress() + 1; if (max_vm != Mapping::kHiAppMemEnd) { Printf("ThreadSanitizer: unsupported vm address limit %p, expected %p.\n", max_vm, Mapping::kHiAppMemEnd); Die(); } #endif } void InitializePlatform() { DisableCoreDumperIfNecessary(); #if !SANITIZER_GO CheckAndProtect(); CHECK_EQ(main_thread_identity, 0); main_thread_identity = (uptr)pthread_self(); prev_pthread_introspection_hook = pthread_introspection_hook_install(&my_pthread_introspection_hook); #endif } #if !SANITIZER_GO void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) { // The pointer to the ThreadState object is stored in the shadow memory // of the tls. uptr tls_end = tls_addr + tls_size; ThreadState **thr_state_loc = cur_thread_location(); if (thr_state_loc == nullptr) { MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, tls_size); } else { uptr thr_state_start = (uptr)thr_state_loc; uptr thr_state_end = thr_state_start + sizeof(uptr); CHECK_GE(thr_state_start, tls_addr); CHECK_LE(thr_state_start, tls_addr + tls_size); CHECK_GE(thr_state_end, tls_addr); CHECK_LE(thr_state_end, tls_addr + tls_size); MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, thr_state_start - tls_addr); MemoryRangeImitateWrite(thr, /*pc=*/2, thr_state_end, tls_end - thr_state_end); } } #endif #if !SANITIZER_GO // Note: this function runs with async signals enabled, // so it must not touch any tsan state. int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m, void *abstime), void *c, void *m, void *abstime, void(*cleanup)(void *arg), void *arg) { // pthread_cleanup_push/pop are hardcore macros mess. // We can't intercept nor call them w/o including pthread.h. int res; pthread_cleanup_push(cleanup, arg); res = fn(c, m, abstime); pthread_cleanup_pop(0); return res; } #endif } // namespace __tsan #endif // SANITIZER_MAC