// -*- C++ -*- // Copyright (C) 2011-2018 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 3, or (at your option) any later // version. // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING3. If not see // . /** * @file testsuite_random.h */ #ifndef _GLIBCXX_TESTSUITE_RANDOM_H #define _GLIBCXX_TESTSUITE_RANDOM_H #include #include #include namespace __gnu_test { // Adapted for libstdc++ from GNU gsl-1.14/randist/test.c // Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 // James Theiler, Brian Gough template void testDiscreteDist(Distribution& f, Pdf pdf) { double count[BINS], p[BINS]; for (unsigned long i = 0; i < BINS; i++) count[i] = 0; for (unsigned long i = 0; i < N; i++) { auto r = f(); if (r >= 0 && (unsigned long)r < BINS) count[r]++; } for (unsigned long i = 0; i < BINS; i++) p[i] = pdf(i); for (unsigned long i = 0; i < BINS; i++) { bool status_i; double d = std::abs(count[i] - N * p[i]); if (p[i] != 0) { double s = d / std::sqrt(N * p[i]); status_i = (s > 5) && (d > 1); } else status_i = (count[i] != 0); VERIFY( !status_i ); } } inline double bernoulli_pdf(int k, double p) { if (k == 0) return 1 - p; else if (k == 1) return p; else return 0.0; } #ifdef _GLIBCXX_USE_C99_MATH_TR1 inline double binomial_pdf(int k, int n, double p) { if (k < 0 || k > n) return 0.0; else { double q; if (p == 0.0) q = (k == 0) ? 1.0 : 0.0; else if (p == 1.0) q = (k == n) ? 1.0 : 0.0; else { double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0) - std::lgamma(n - k + 1.0)); q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p); q = std::exp(q); } return q; } } #endif inline double discrete_pdf(int k, std::initializer_list wl) { if (!wl.size()) wl = { 1.0 }; if (k < 0 || (std::size_t)k >= wl.size()) return 0.0; else { double sum = 0.0; for (auto it = wl.begin(); it != wl.end(); ++it) sum += *it; return wl.begin()[k] / sum; } } inline double geometric_pdf(int k, double p) { if (k < 0) return 0.0; else if (k == 0) return p; else return p * std::pow(1 - p, k); } #ifdef _GLIBCXX_USE_C99_MATH_TR1 inline double negative_binomial_pdf(int k, int n, double p) { if (k < 0) return 0.0; else { double f = std::lgamma(k + (double)n); double a = std::lgamma(n); double b = std::lgamma(k + 1.0); return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k); } } inline double poisson_pdf(int k, double mu) { if (k < 0) return 0.0; else { double lf = std::lgamma(k + 1.0); return std::exp(std::log(mu) * k - lf - mu); } } #endif inline double uniform_int_pdf(int k, int a, int b) { if (k < 0 || k < a || k > b) return 0.0; else return 1.0 / (b - a + 1.0); } #ifdef _GLIBCXX_USE_C99_MATH_TR1 inline double lbincoef(int n, int k) { return std::lgamma(double(1 + n)) - std::lgamma(double(1 + k)) - std::lgamma(double(1 + n - k)); } inline double hypergeometric_pdf(int k, int N, int K, int n) { if (k < 0 || k < std::max(0, n - (N - K)) || k > std::min(K, n)) return 0.0; else return lbincoef(K, k) + lbincoef(N - K, n - k) - lbincoef(N, n); } #endif } // namespace __gnu_test #endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H