// -*- C++ -*- // Copyright (C) 2007-2019 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 3, or (at your option) any later // version. // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file parallel/multiseq_selection.h * @brief Functions to find elements of a certain global __rank in * multiple sorted sequences. Also serves for splitting such * sequence sets. * * The algorithm description can be found in * * P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard. * Merging Multiple Lists on Hierarchical-Memory Multiprocessors. * Journal of Parallel and Distributed Computing, 12(2):171-177, 1991. * * This file is a GNU parallel extension to the Standard C++ Library. */ // Written by Johannes Singler. #ifndef _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H #define _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H 1 #include #include #include namespace __gnu_parallel { /** @brief Compare __a pair of types lexicographically, ascending. */ template class _Lexicographic : public std::binary_function, std::pair<_T1, _T2>, bool> { private: _Compare& _M_comp; public: _Lexicographic(_Compare& __comp) : _M_comp(__comp) { } bool operator()(const std::pair<_T1, _T2>& __p1, const std::pair<_T1, _T2>& __p2) const { if (_M_comp(__p1.first, __p2.first)) return true; if (_M_comp(__p2.first, __p1.first)) return false; // Firsts are equal. return __p1.second < __p2.second; } }; /** @brief Compare __a pair of types lexicographically, descending. */ template class _LexicographicReverse : public std::binary_function<_T1, _T2, bool> { private: _Compare& _M_comp; public: _LexicographicReverse(_Compare& __comp) : _M_comp(__comp) { } bool operator()(const std::pair<_T1, _T2>& __p1, const std::pair<_T1, _T2>& __p2) const { if (_M_comp(__p2.first, __p1.first)) return true; if (_M_comp(__p1.first, __p2.first)) return false; // Firsts are equal. return __p2.second < __p1.second; } }; /** * @brief Splits several sorted sequences at a certain global __rank, * resulting in a splitting point for each sequence. * The sequences are passed via a sequence of random-access * iterator pairs, none of the sequences may be empty. If there * are several equal elements across the split, the ones on the * __left side will be chosen from sequences with smaller number. * @param __begin_seqs Begin of the sequence of iterator pairs. * @param __end_seqs End of the sequence of iterator pairs. * @param __rank The global rank to partition at. * @param __begin_offsets A random-access __sequence __begin where the * __result will be stored in. Each element of the sequence is an * iterator that points to the first element on the greater part of * the respective __sequence. * @param __comp The ordering functor, defaults to std::less<_Tp>. */ template void multiseq_partition(_RanSeqs __begin_seqs, _RanSeqs __end_seqs, _RankType __rank, _RankIterator __begin_offsets, _Compare __comp = std::less< typename std::iterator_traits::value_type:: first_type>::value_type>()) // std::less<_Tp> { _GLIBCXX_CALL(__end_seqs - __begin_seqs) typedef typename std::iterator_traits<_RanSeqs>::value_type::first_type _It; typedef typename std::iterator_traits<_RanSeqs>::difference_type _SeqNumber; typedef typename std::iterator_traits<_It>::difference_type _DifferenceType; typedef typename std::iterator_traits<_It>::value_type _ValueType; _Lexicographic<_ValueType, _SeqNumber, _Compare> __lcomp(__comp); _LexicographicReverse<_ValueType, _SeqNumber, _Compare> __lrcomp(__comp); // Number of sequences, number of elements in total (possibly // including padding). _DifferenceType __m = std::distance(__begin_seqs, __end_seqs), __nn = 0, __nmax, __n, __r; for (_SeqNumber __i = 0; __i < __m; __i++) { __nn += std::distance(__begin_seqs[__i].first, __begin_seqs[__i].second); _GLIBCXX_PARALLEL_ASSERT( std::distance(__begin_seqs[__i].first, __begin_seqs[__i].second) > 0); } if (__rank == __nn) { for (_SeqNumber __i = 0; __i < __m; __i++) __begin_offsets[__i] = __begin_seqs[__i].second; // Very end. // Return __m - 1; return; } _GLIBCXX_PARALLEL_ASSERT(__m != 0); _GLIBCXX_PARALLEL_ASSERT(__nn != 0); _GLIBCXX_PARALLEL_ASSERT(__rank >= 0); _GLIBCXX_PARALLEL_ASSERT(__rank < __nn); _DifferenceType* __ns = new _DifferenceType[__m]; _DifferenceType* __a = new _DifferenceType[__m]; _DifferenceType* __b = new _DifferenceType[__m]; _DifferenceType __l; __ns[0] = std::distance(__begin_seqs[0].first, __begin_seqs[0].second); __nmax = __ns[0]; for (_SeqNumber __i = 0; __i < __m; __i++) { __ns[__i] = std::distance(__begin_seqs[__i].first, __begin_seqs[__i].second); __nmax = std::max(__nmax, __ns[__i]); } __r = __rd_log2(__nmax) + 1; // Pad all lists to this length, at least as long as any ns[__i], // equality iff __nmax = 2^__k - 1. __l = (1ULL << __r) - 1; for (_SeqNumber __i = 0; __i < __m; __i++) { __a[__i] = 0; __b[__i] = __l; } __n = __l / 2; // Invariants: // 0 <= __a[__i] <= __ns[__i], 0 <= __b[__i] <= __l #define __S(__i) (__begin_seqs[__i].first) // Initial partition. std::vector > __sample; for (_SeqNumber __i = 0; __i < __m; __i++) if (__n < __ns[__i]) //__sequence long enough __sample.push_back(std::make_pair(__S(__i)[__n], __i)); __gnu_sequential::sort(__sample.begin(), __sample.end(), __lcomp); for (_SeqNumber __i = 0; __i < __m; __i++) //conceptual infinity if (__n >= __ns[__i]) //__sequence too short, conceptual infinity __sample.push_back( std::make_pair(__S(__i)[0] /*__dummy element*/, __i)); _DifferenceType __localrank = __rank / __l; _SeqNumber __j; for (__j = 0; __j < __localrank && ((__n + 1) <= __ns[__sample[__j].second]); ++__j) __a[__sample[__j].second] += __n + 1; for (; __j < __m; __j++) __b[__sample[__j].second] -= __n + 1; // Further refinement. while (__n > 0) { __n /= 2; _SeqNumber __lmax_seq = -1; // to avoid warning const _ValueType* __lmax = 0; // impossible to avoid the warning? for (_SeqNumber __i = 0; __i < __m; __i++) { if (__a[__i] > 0) { if (!__lmax) { __lmax = &(__S(__i)[__a[__i] - 1]); __lmax_seq = __i; } else { // Max, favor rear sequences. if (!__comp(__S(__i)[__a[__i] - 1], *__lmax)) { __lmax = &(__S(__i)[__a[__i] - 1]); __lmax_seq = __i; } } } } _SeqNumber __i; for (__i = 0; __i < __m; __i++) { _DifferenceType __middle = (__b[__i] + __a[__i]) / 2; if (__lmax && __middle < __ns[__i] && __lcomp(std::make_pair(__S(__i)[__middle], __i), std::make_pair(*__lmax, __lmax_seq))) __a[__i] = std::min(__a[__i] + __n + 1, __ns[__i]); else __b[__i] -= __n + 1; } _DifferenceType __leftsize = 0; for (_SeqNumber __i = 0; __i < __m; __i++) __leftsize += __a[__i] / (__n + 1); _DifferenceType __skew = __rank / (__n + 1) - __leftsize; if (__skew > 0) { // Move to the left, find smallest. std::priority_queue, std::vector >, _LexicographicReverse<_ValueType, _SeqNumber, _Compare> > __pq(__lrcomp); for (_SeqNumber __i = 0; __i < __m; __i++) if (__b[__i] < __ns[__i]) __pq.push(std::make_pair(__S(__i)[__b[__i]], __i)); for (; __skew != 0 && !__pq.empty(); --__skew) { _SeqNumber __source = __pq.top().second; __pq.pop(); __a[__source] = std::min(__a[__source] + __n + 1, __ns[__source]); __b[__source] += __n + 1; if (__b[__source] < __ns[__source]) __pq.push( std::make_pair(__S(__source)[__b[__source]], __source)); } } else if (__skew < 0) { // Move to the right, find greatest. std::priority_queue, std::vector >, _Lexicographic<_ValueType, _SeqNumber, _Compare> > __pq(__lcomp); for (_SeqNumber __i = 0; __i < __m; __i++) if (__a[__i] > 0) __pq.push(std::make_pair(__S(__i)[__a[__i] - 1], __i)); for (; __skew != 0; ++__skew) { _SeqNumber __source = __pq.top().second; __pq.pop(); __a[__source] -= __n + 1; __b[__source] -= __n + 1; if (__a[__source] > 0) __pq.push(std::make_pair( __S(__source)[__a[__source] - 1], __source)); } } } // Postconditions: // __a[__i] == __b[__i] in most cases, except when __a[__i] has been // clamped because of having reached the boundary // Now return the result, calculate the offset. // Compare the keys on both edges of the border. // Maximum of left edge, minimum of right edge. _ValueType* __maxleft = 0; _ValueType* __minright = 0; for (_SeqNumber __i = 0; __i < __m; __i++) { if (__a[__i] > 0) { if (!__maxleft) __maxleft = &(__S(__i)[__a[__i] - 1]); else { // Max, favor rear sequences. if (!__comp(__S(__i)[__a[__i] - 1], *__maxleft)) __maxleft = &(__S(__i)[__a[__i] - 1]); } } if (__b[__i] < __ns[__i]) { if (!__minright) __minright = &(__S(__i)[__b[__i]]); else { // Min, favor fore sequences. if (__comp(__S(__i)[__b[__i]], *__minright)) __minright = &(__S(__i)[__b[__i]]); } } } _SeqNumber __seq = 0; for (_SeqNumber __i = 0; __i < __m; __i++) __begin_offsets[__i] = __S(__i) + __a[__i]; delete[] __ns; delete[] __a; delete[] __b; } /** * @brief Selects the element at a certain global __rank from several * sorted sequences. * * The sequences are passed via a sequence of random-access * iterator pairs, none of the sequences may be empty. * @param __begin_seqs Begin of the sequence of iterator pairs. * @param __end_seqs End of the sequence of iterator pairs. * @param __rank The global rank to partition at. * @param __offset The rank of the selected element in the global * subsequence of elements equal to the selected element. If the * selected element is unique, this number is 0. * @param __comp The ordering functor, defaults to std::less. */ template _Tp multiseq_selection(_RanSeqs __begin_seqs, _RanSeqs __end_seqs, _RankType __rank, _RankType& __offset, _Compare __comp = std::less<_Tp>()) { _GLIBCXX_CALL(__end_seqs - __begin_seqs) typedef typename std::iterator_traits<_RanSeqs>::value_type::first_type _It; typedef typename std::iterator_traits<_RanSeqs>::difference_type _SeqNumber; typedef typename std::iterator_traits<_It>::difference_type _DifferenceType; _Lexicographic<_Tp, _SeqNumber, _Compare> __lcomp(__comp); _LexicographicReverse<_Tp, _SeqNumber, _Compare> __lrcomp(__comp); // Number of sequences, number of elements in total (possibly // including padding). _DifferenceType __m = std::distance(__begin_seqs, __end_seqs); _DifferenceType __nn = 0; _DifferenceType __nmax, __n, __r; for (_SeqNumber __i = 0; __i < __m; __i++) __nn += std::distance(__begin_seqs[__i].first, __begin_seqs[__i].second); if (__m == 0 || __nn == 0 || __rank < 0 || __rank >= __nn) { // result undefined if there is no data or __rank is outside bounds throw std::exception(); } _DifferenceType* __ns = new _DifferenceType[__m]; _DifferenceType* __a = new _DifferenceType[__m]; _DifferenceType* __b = new _DifferenceType[__m]; _DifferenceType __l; __ns[0] = std::distance(__begin_seqs[0].first, __begin_seqs[0].second); __nmax = __ns[0]; for (_SeqNumber __i = 0; __i < __m; ++__i) { __ns[__i] = std::distance(__begin_seqs[__i].first, __begin_seqs[__i].second); __nmax = std::max(__nmax, __ns[__i]); } __r = __rd_log2(__nmax) + 1; // Pad all lists to this length, at least as long as any ns[__i], // equality iff __nmax = 2^__k - 1 __l = __round_up_to_pow2(__r) - 1; for (_SeqNumber __i = 0; __i < __m; ++__i) { __a[__i] = 0; __b[__i] = __l; } __n = __l / 2; // Invariants: // 0 <= __a[__i] <= __ns[__i], 0 <= __b[__i] <= __l #define __S(__i) (__begin_seqs[__i].first) // Initial partition. std::vector > __sample; for (_SeqNumber __i = 0; __i < __m; __i++) if (__n < __ns[__i]) __sample.push_back(std::make_pair(__S(__i)[__n], __i)); __gnu_sequential::sort(__sample.begin(), __sample.end(), __lcomp, sequential_tag()); // Conceptual infinity. for (_SeqNumber __i = 0; __i < __m; __i++) if (__n >= __ns[__i]) __sample.push_back( std::make_pair(__S(__i)[0] /*__dummy element*/, __i)); _DifferenceType __localrank = __rank / __l; _SeqNumber __j; for (__j = 0; __j < __localrank && ((__n + 1) <= __ns[__sample[__j].second]); ++__j) __a[__sample[__j].second] += __n + 1; for (; __j < __m; ++__j) __b[__sample[__j].second] -= __n + 1; // Further refinement. while (__n > 0) { __n /= 2; const _Tp* __lmax = 0; for (_SeqNumber __i = 0; __i < __m; ++__i) { if (__a[__i] > 0) { if (!__lmax) __lmax = &(__S(__i)[__a[__i] - 1]); else { if (__comp(*__lmax, __S(__i)[__a[__i] - 1])) //max __lmax = &(__S(__i)[__a[__i] - 1]); } } } _SeqNumber __i; for (__i = 0; __i < __m; __i++) { _DifferenceType __middle = (__b[__i] + __a[__i]) / 2; if (__lmax && __middle < __ns[__i] && __comp(__S(__i)[__middle], *__lmax)) __a[__i] = std::min(__a[__i] + __n + 1, __ns[__i]); else __b[__i] -= __n + 1; } _DifferenceType __leftsize = 0; for (_SeqNumber __i = 0; __i < __m; ++__i) __leftsize += __a[__i] / (__n + 1); _DifferenceType __skew = __rank / (__n + 1) - __leftsize; if (__skew > 0) { // Move to the left, find smallest. std::priority_queue, std::vector >, _LexicographicReverse<_Tp, _SeqNumber, _Compare> > __pq(__lrcomp); for (_SeqNumber __i = 0; __i < __m; ++__i) if (__b[__i] < __ns[__i]) __pq.push(std::make_pair(__S(__i)[__b[__i]], __i)); for (; __skew != 0 && !__pq.empty(); --__skew) { _SeqNumber __source = __pq.top().second; __pq.pop(); __a[__source] = std::min(__a[__source] + __n + 1, __ns[__source]); __b[__source] += __n + 1; if (__b[__source] < __ns[__source]) __pq.push( std::make_pair(__S(__source)[__b[__source]], __source)); } } else if (__skew < 0) { // Move to the right, find greatest. std::priority_queue, std::vector >, _Lexicographic<_Tp, _SeqNumber, _Compare> > __pq(__lcomp); for (_SeqNumber __i = 0; __i < __m; ++__i) if (__a[__i] > 0) __pq.push(std::make_pair(__S(__i)[__a[__i] - 1], __i)); for (; __skew != 0; ++__skew) { _SeqNumber __source = __pq.top().second; __pq.pop(); __a[__source] -= __n + 1; __b[__source] -= __n + 1; if (__a[__source] > 0) __pq.push(std::make_pair( __S(__source)[__a[__source] - 1], __source)); } } } // Postconditions: // __a[__i] == __b[__i] in most cases, except when __a[__i] has been // clamped because of having reached the boundary // Now return the result, calculate the offset. // Compare the keys on both edges of the border. // Maximum of left edge, minimum of right edge. bool __maxleftset = false, __minrightset = false; // Impossible to avoid the warning? _Tp __maxleft, __minright; for (_SeqNumber __i = 0; __i < __m; ++__i) { if (__a[__i] > 0) { if (!__maxleftset) { __maxleft = __S(__i)[__a[__i] - 1]; __maxleftset = true; } else { // Max. if (__comp(__maxleft, __S(__i)[__a[__i] - 1])) __maxleft = __S(__i)[__a[__i] - 1]; } } if (__b[__i] < __ns[__i]) { if (!__minrightset) { __minright = __S(__i)[__b[__i]]; __minrightset = true; } else { // Min. if (__comp(__S(__i)[__b[__i]], __minright)) __minright = __S(__i)[__b[__i]]; } } } // Minright is the __splitter, in any case. if (!__maxleftset || __comp(__minright, __maxleft)) { // Good luck, everything is split unambiguously. __offset = 0; } else { // We have to calculate an offset. __offset = 0; for (_SeqNumber __i = 0; __i < __m; ++__i) { _DifferenceType lb = std::lower_bound(__S(__i), __S(__i) + __ns[__i], __minright, __comp) - __S(__i); __offset += __a[__i] - lb; } } delete[] __ns; delete[] __a; delete[] __b; return __minright; } } #undef __S #endif /* _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H */