Retro68/gcc/libgo/runtime/proc.c
2022-10-27 20:55:19 +02:00

891 lines
22 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include "config.h"
#ifdef HAVE_DL_ITERATE_PHDR
#include <link.h>
#endif
#include "runtime.h"
#include "arch.h"
#include "defs.h"
#ifdef USING_SPLIT_STACK
/* FIXME: These are not declared anywhere. */
extern void __splitstack_getcontext(void *context[10]);
extern void __splitstack_setcontext(void *context[10]);
extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
extern void * __splitstack_resetcontext(void *context[10], size_t *);
extern void __splitstack_releasecontext(void *context[10]);
extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
void **);
extern void __splitstack_block_signals (int *, int *);
extern void __splitstack_block_signals_context (void *context[10], int *,
int *);
#endif
#ifndef PTHREAD_STACK_MIN
# define PTHREAD_STACK_MIN 8192
#endif
#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
# define StackMin PTHREAD_STACK_MIN
#else
# define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
#endif
uintptr runtime_stacks_sys;
void gtraceback(G*)
__asm__(GOSYM_PREFIX "runtime.gtraceback");
static void gscanstack(G*);
#ifdef __rtems__
#define __thread
#endif
__thread G *g __asm__(GOSYM_PREFIX "runtime.g");
#ifndef SETCONTEXT_CLOBBERS_TLS
static inline void
initcontext(void)
{
}
static inline void
fixcontext(__go_context_t *c __attribute__ ((unused)))
{
}
#else
# if defined(__x86_64__) && defined(__sun__)
// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
// register to that of the thread which called getcontext. The effect
// is that the address of all __thread variables changes. This bug
// also affects pthread_self() and pthread_getspecific. We work
// around it by clobbering the context field directly to keep %fs the
// same.
static __thread greg_t fs;
static inline void
initcontext(void)
{
ucontext_t c;
getcontext(&c);
fs = c.uc_mcontext.gregs[REG_FSBASE];
}
static inline void
fixcontext(ucontext_t* c)
{
c->uc_mcontext.gregs[REG_FSBASE] = fs;
}
# elif defined(__NetBSD__)
// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
// and restore it ourselves.
static __thread __greg_t tlsbase;
static inline void
initcontext(void)
{
ucontext_t c;
getcontext(&c);
tlsbase = c.uc_mcontext._mc_tlsbase;
}
static inline void
fixcontext(ucontext_t* c)
{
c->uc_mcontext._mc_tlsbase = tlsbase;
}
# elif defined(__sparc__)
static inline void
initcontext(void)
{
}
static inline void
fixcontext(ucontext_t *c)
{
/* ??? Using
register unsigned long thread __asm__("%g7");
c->uc_mcontext.gregs[REG_G7] = thread;
results in
error: variable thread might be clobbered by \
longjmp or vfork [-Werror=clobbered]
which ought to be false, as %g7 is a fixed register. */
if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
else
asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
}
# elif defined(_AIX)
static inline void
initcontext(void)
{
}
static inline void
fixcontext(ucontext_t* c)
{
// Thread pointer is in r13, per 64-bit ABI.
if (sizeof (c->uc_mcontext.jmp_context.gpr[13]) == 8)
asm ("std 13, %0" : "=m"(c->uc_mcontext.jmp_context.gpr[13]));
}
# else
# error unknown case for SETCONTEXT_CLOBBERS_TLS
# endif
#endif
// ucontext_arg returns a properly aligned ucontext_t value. On some
// systems a ucontext_t value must be aligned to a 16-byte boundary.
// The g structure that has fields of type ucontext_t is defined in
// Go, and Go has no simple way to align a field to such a boundary.
// So we make the field larger in runtime2.go and pick an appropriate
// offset within the field here.
static __go_context_t*
ucontext_arg(uintptr_t* go_ucontext)
{
uintptr_t p = (uintptr_t)go_ucontext;
size_t align = __alignof__(__go_context_t);
if(align > 16) {
// We only ensured space for up to a 16 byte alignment
// in libgo/go/runtime/runtime2.go.
runtime_throw("required alignment of __go_context_t too large");
}
p = (p + align - 1) &~ (uintptr_t)(align - 1);
return (__go_context_t*)p;
}
// We can not always refer to the TLS variables directly. The
// compiler will call tls_get_addr to get the address of the variable,
// and it may hold it in a register across a call to schedule. When
// we get back from the call we may be running in a different thread,
// in which case the register now points to the TLS variable for a
// different thread. We use non-inlinable functions to avoid this
// when necessary.
G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
G*
runtime_g(void)
{
return g;
}
M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
M*
runtime_m(void)
{
if(g == nil)
return nil;
return g->m;
}
// Set g.
void runtime_setg(G*) __attribute__ ((no_split_stack));
void
runtime_setg(G* gp)
{
g = gp;
}
void runtime_newosproc(M *)
__asm__(GOSYM_PREFIX "runtime.newosproc");
// Start a new thread.
void
runtime_newosproc(M *mp)
{
pthread_attr_t attr;
sigset_t clear, old;
pthread_t tid;
int tries;
int ret;
if(pthread_attr_init(&attr) != 0)
runtime_throw("pthread_attr_init");
if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
runtime_throw("pthread_attr_setdetachstate");
// Block signals during pthread_create so that the new thread
// starts with signals disabled. It will enable them in minit.
sigfillset(&clear);
#ifdef SIGTRAP
// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
sigdelset(&clear, SIGTRAP);
#endif
sigemptyset(&old);
pthread_sigmask(SIG_BLOCK, &clear, &old);
for (tries = 0; tries < 20; tries++) {
ret = pthread_create(&tid, &attr, runtime_mstart, mp);
if (ret != EAGAIN) {
break;
}
runtime_usleep((tries + 1) * 1000); // Milliseconds.
}
pthread_sigmask(SIG_SETMASK, &old, nil);
if (ret != 0) {
runtime_printf("pthread_create failed: %d\n", ret);
runtime_throw("pthread_create");
}
if(pthread_attr_destroy(&attr) != 0)
runtime_throw("pthread_attr_destroy");
}
// Switch context to a different goroutine. This is like longjmp.
void runtime_gogo(G*) __attribute__ ((noinline));
void
runtime_gogo(G* newg)
{
#ifdef USING_SPLIT_STACK
__splitstack_setcontext((void*)(&newg->stackcontext[0]));
#endif
g = newg;
newg->fromgogo = true;
fixcontext(ucontext_arg(&newg->context[0]));
__go_setcontext(ucontext_arg(&newg->context[0]));
runtime_throw("gogo setcontext returned");
}
// Save context and call fn passing g as a parameter. This is like
// setjmp. Because getcontext always returns 0, unlike setjmp, we use
// g->fromgogo as a code. It will be true if we got here via
// setcontext. g == nil the first time this is called in a new m.
void runtime_mcall(FuncVal *) __attribute__ ((noinline));
void
runtime_mcall(FuncVal *fv)
{
M *mp;
G *gp;
#ifndef USING_SPLIT_STACK
void *afterregs;
#endif
// Ensure that all registers are on the stack for the garbage
// collector.
__builtin_unwind_init();
flush_registers_to_secondary_stack();
gp = g;
mp = gp->m;
if(gp == mp->g0)
runtime_throw("runtime: mcall called on m->g0 stack");
if(gp != nil) {
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&gp->stackcontext[0]));
#else
// We have to point to an address on the stack that is
// below the saved registers.
gp->gcnextsp = (uintptr)(&afterregs);
gp->gcnextsp2 = (uintptr)(secondary_stack_pointer());
#endif
gp->fromgogo = false;
__go_getcontext(ucontext_arg(&gp->context[0]));
// When we return from getcontext, we may be running
// in a new thread. That means that g may have
// changed. It is a global variables so we will
// reload it, but the address of g may be cached in
// our local stack frame, and that address may be
// wrong. Call the function to reload the value for
// this thread.
gp = runtime_g();
mp = gp->m;
if(gp->traceback != 0)
gtraceback(gp);
if(gp->scang != 0)
gscanstack(gp);
}
if (gp == nil || !gp->fromgogo) {
#ifdef USING_SPLIT_STACK
__splitstack_setcontext((void*)(&mp->g0->stackcontext[0]));
#endif
mp->g0->entry = fv;
mp->g0->param = gp;
// It's OK to set g directly here because this case
// can not occur if we got here via a setcontext to
// the getcontext call just above.
g = mp->g0;
fixcontext(ucontext_arg(&mp->g0->context[0]));
__go_setcontext(ucontext_arg(&mp->g0->context[0]));
runtime_throw("runtime: mcall function returned");
}
}
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.
extern G* allocg(void)
__asm__ (GOSYM_PREFIX "runtime.allocg");
bool runtime_isarchive;
extern void kickoff(void)
__asm__(GOSYM_PREFIX "runtime.kickoff");
extern void minit(void)
__asm__(GOSYM_PREFIX "runtime.minit");
extern void mstart1()
__asm__(GOSYM_PREFIX "runtime.mstart1");
extern void stopm(void)
__asm__(GOSYM_PREFIX "runtime.stopm");
extern void mexit(bool)
__asm__(GOSYM_PREFIX "runtime.mexit");
extern void handoffp(P*)
__asm__(GOSYM_PREFIX "runtime.handoffp");
extern void wakep(void)
__asm__(GOSYM_PREFIX "runtime.wakep");
extern void stoplockedm(void)
__asm__(GOSYM_PREFIX "runtime.stoplockedm");
extern void schedule(void)
__asm__(GOSYM_PREFIX "runtime.schedule");
extern void execute(G*, bool)
__asm__(GOSYM_PREFIX "runtime.execute");
extern void reentersyscall(uintptr, uintptr)
__asm__(GOSYM_PREFIX "runtime.reentersyscall");
extern void reentersyscallblock(uintptr, uintptr)
__asm__(GOSYM_PREFIX "runtime.reentersyscallblock");
extern G* gfget(P*)
__asm__(GOSYM_PREFIX "runtime.gfget");
extern void acquirep(P*)
__asm__(GOSYM_PREFIX "runtime.acquirep");
extern P* releasep(void)
__asm__(GOSYM_PREFIX "runtime.releasep");
extern void incidlelocked(int32)
__asm__(GOSYM_PREFIX "runtime.incidlelocked");
extern void globrunqput(G*)
__asm__(GOSYM_PREFIX "runtime.globrunqput");
extern P* pidleget(void)
__asm__(GOSYM_PREFIX "runtime.pidleget");
extern struct mstats* getMemstats(void)
__asm__(GOSYM_PREFIX "runtime.getMemstats");
bool runtime_isstarted;
// Used to determine the field alignment.
struct field_align
{
char c;
Hchan *p;
};
void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback");
// getTraceback stores a traceback of gp in the g's traceback field
// and then returns to me. We expect that gp's traceback is not nil.
// It works by saving me's current context, and checking gp's traceback field.
// If gp's traceback field is not nil, it starts running gp.
// In places where we call getcontext, we check the traceback field.
// If it is not nil, we collect a traceback, and then return to the
// goroutine stored in the traceback field, which is me.
void getTraceback(G* me, G* gp)
{
M* holdm;
holdm = gp->m;
gp->m = me->m;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&me->stackcontext[0]));
#endif
__go_getcontext(ucontext_arg(&me->context[0]));
if (gp->traceback != 0) {
runtime_gogo(gp);
}
gp->m = holdm;
}
// Do a stack trace of gp, and then restore the context to
// gp->traceback->gp.
void
gtraceback(G* gp)
{
Traceback* traceback;
traceback = (Traceback*)gp->traceback;
gp->traceback = 0;
traceback->c = runtime_callers(1, traceback->locbuf,
sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
runtime_gogo(traceback->gp);
}
void doscanstackswitch(G*, G*) __asm__(GOSYM_PREFIX "runtime.doscanstackswitch");
// Switch to gp and let it scan its stack.
// The first time gp->scang is set (to me). The second time here
// gp is done scanning, and has unset gp->scang, so we just return.
void
doscanstackswitch(G* me, G* gp)
{
M* holdm;
__go_assert(me->entry == nil);
me->fromgogo = false;
holdm = gp->m;
gp->m = me->m;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&me->stackcontext[0]));
#endif
__go_getcontext(ucontext_arg(&me->context[0]));
if(me->entry != nil) {
// Got here from mcall.
// The stack scanning code may call systemstack, which calls
// mcall, which calls setcontext.
// Run the function, which at the end will switch back to gp.
FuncVal *fv = me->entry;
void (*pfn)(G*) = (void (*)(G*))fv->fn;
G* gp1 = (G*)me->param;
__go_assert(gp1 == gp);
me->entry = nil;
me->param = nil;
__builtin_call_with_static_chain(pfn(gp1), fv);
abort();
}
if (gp->scang != 0)
runtime_gogo(gp);
gp->m = holdm;
}
// Do a stack scan, then switch back to the g that triggers this scan.
// We come here from doscanstackswitch.
static void
gscanstack(G *gp)
{
G *oldg, *oldcurg;
oldg = (G*)gp->scang;
oldcurg = oldg->m->curg;
oldg->m->curg = gp;
gp->scang = 0;
doscanstack(gp, (void*)gp->scangcw);
gp->scangcw = 0;
oldg->m->curg = oldcurg;
runtime_gogo(oldg);
}
// Called by pthread_create to start an M.
void*
runtime_mstart(void *arg)
{
M* mp;
G* gp;
mp = (M*)(arg);
gp = mp->g0;
gp->m = mp;
g = gp;
gp->entry = nil;
gp->param = nil;
// We have to call minit before we call getcontext,
// because getcontext will copy the signal mask.
minit();
initcontext();
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&gp->stackcontext[0]));
#else
gp->gcinitialsp = &arg;
// Setting gcstacksize to 0 is a marker meaning that gcinitialsp
// is the top of the stack, not the bottom.
gp->gcstacksize = 0;
gp->gcnextsp = (uintptr)(&arg);
gp->gcinitialsp2 = secondary_stack_pointer();
gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
#endif
// Save the currently active context. This will return
// multiple times via the setcontext call in mcall.
__go_getcontext(ucontext_arg(&gp->context[0]));
if(gp->traceback != 0) {
// Got here from getTraceback.
// I'm not sure this ever actually happens--getTraceback
// may always go to the getcontext call in mcall.
gtraceback(gp);
}
if(gp->scang != 0)
// Got here from doscanswitch. Should not happen.
runtime_throw("mstart with scang");
if(gp->entry != nil) {
// Got here from mcall.
FuncVal *fv = gp->entry;
void (*pfn)(G*) = (void (*)(G*))fv->fn;
G* gp1 = (G*)gp->param;
gp->entry = nil;
gp->param = nil;
__builtin_call_with_static_chain(pfn(gp1), fv);
abort();
}
if(mp->exiting) {
mexit(true);
return nil;
}
// Initial call to getcontext--starting thread.
#ifdef USING_SPLIT_STACK
{
int dont_block_signals = 0;
__splitstack_block_signals(&dont_block_signals, nil);
}
#endif
mstart1();
// mstart1 does not return, but we need a return statement
// here to avoid a compiler warning.
return nil;
}
typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
M *m;
G *g;
uintptr *tls;
void (*fn)(void);
};
void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext");
// setGContext sets up a new goroutine context for the current g.
void
setGContext(void)
{
int val;
G *gp;
initcontext();
gp = g;
gp->entry = nil;
gp->param = nil;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&gp->stackcontext[0]));
val = 0;
__splitstack_block_signals(&val, nil);
#else
gp->gcinitialsp = &val;
gp->gcstack = 0;
gp->gcstacksize = 0;
gp->gcnextsp = (uintptr)(&val);
gp->gcinitialsp2 = secondary_stack_pointer();
gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
#endif
__go_getcontext(ucontext_arg(&gp->context[0]));
if(gp->entry != nil) {
// Got here from mcall.
FuncVal *fv = gp->entry;
void (*pfn)(G*) = (void (*)(G*))fv->fn;
G* gp1 = (G*)gp->param;
gp->entry = nil;
gp->param = nil;
__builtin_call_with_static_chain(pfn(gp1), fv);
abort();
}
}
void makeGContext(G*, byte*, uintptr)
__asm__(GOSYM_PREFIX "runtime.makeGContext");
// makeGContext makes a new context for a g.
void
makeGContext(G* gp, byte* sp, uintptr spsize) {
__go_context_t *uc;
uc = ucontext_arg(&gp->context[0]);
__go_getcontext(uc);
__go_makecontext(uc, kickoff, sp, (size_t)spsize);
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime_gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
void runtime_entersyscall() __attribute__ ((no_split_stack));
static void doentersyscall(uintptr, uintptr)
__attribute__ ((no_split_stack, noinline));
void
runtime_entersyscall()
{
// Save the registers in the g structure so that any pointers
// held in registers will be seen by the garbage collector.
if (!runtime_usestackmaps)
__go_getcontext(ucontext_arg(&g->gcregs[0]));
// Note that if this function does save any registers itself,
// we might store the wrong value in the call to getcontext.
// FIXME: This assumes that we do not need to save any
// callee-saved registers to access the TLS variable g. We
// don't want to put the ucontext_t on the stack because it is
// large and we can not split the stack here.
doentersyscall((uintptr)runtime_getcallerpc(),
(uintptr)runtime_getcallersp());
}
static void
doentersyscall(uintptr pc, uintptr sp)
{
// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
{
size_t gcstacksize;
g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
(void**)(&g->gcnextsegment),
(void**)(&g->gcnextsp),
&g->gcinitialsp));
g->gcstacksize = (uintptr)gcstacksize;
}
#else
{
void *v;
g->gcnextsp = (uintptr)(&v);
g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
}
#endif
reentersyscall(pc, sp);
}
static void doentersyscallblock(uintptr, uintptr)
__attribute__ ((no_split_stack, noinline));
// The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
void
runtime_entersyscallblock()
{
// Save the registers in the g structure so that any pointers
// held in registers will be seen by the garbage collector.
if (!runtime_usestackmaps)
__go_getcontext(ucontext_arg(&g->gcregs[0]));
// See comment in runtime_entersyscall.
doentersyscallblock((uintptr)runtime_getcallerpc(),
(uintptr)runtime_getcallersp());
}
static void
doentersyscallblock(uintptr pc, uintptr sp)
{
// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
{
size_t gcstacksize;
g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
(void**)(&g->gcnextsegment),
(void**)(&g->gcnextsp),
&g->gcinitialsp));
g->gcstacksize = (uintptr)gcstacksize;
}
#else
{
void *v;
g->gcnextsp = (uintptr)(&v);
g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
}
#endif
reentersyscallblock(pc, sp);
}
// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize)
{
uintptr stacksize;
G *newg;
byte* unused_stack;
uintptr unused_stacksize;
#ifdef USING_SPLIT_STACK
int dont_block_signals = 0;
size_t ss_stacksize;
#endif
if (ret_stack == nil) {
ret_stack = &unused_stack;
}
if (ret_stacksize == nil) {
ret_stacksize = &unused_stacksize;
}
newg = allocg();
if(allocatestack) {
stacksize = StackMin;
if(signalstack) {
stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K
#ifdef SIGSTKSZ
if(stacksize < (uintptr)(SIGSTKSZ))
stacksize = (uintptr)(SIGSTKSZ);
#endif
}
#ifdef USING_SPLIT_STACK
*ret_stack = __splitstack_makecontext(stacksize,
(void*)(&newg->stackcontext[0]),
&ss_stacksize);
*ret_stacksize = (uintptr)ss_stacksize;
__splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
&dont_block_signals, nil);
#else
// In 64-bit mode, the maximum Go allocation space is
// 128G. Our stack size is 4M, which only permits 32K
// goroutines. In order to not limit ourselves,
// allocate the stacks out of separate memory. In
// 32-bit mode, the Go allocation space is all of
// memory anyhow.
if(sizeof(void*) == 8) {
void *p = runtime_sysAlloc(stacksize, &getMemstats()->stacks_sys);
if(p == nil)
runtime_throw("runtime: cannot allocate memory for goroutine stack");
*ret_stack = (byte*)p;
} else {
*ret_stack = runtime_mallocgc(stacksize, nil, false);
runtime_xadd(&runtime_stacks_sys, stacksize);
}
*ret_stacksize = (uintptr)stacksize;
newg->gcinitialsp = *ret_stack;
newg->gcstacksize = (uintptr)stacksize;
newg->gcinitialsp2 = initial_secondary_stack_pointer(*ret_stack);
#endif
}
return newg;
}
void stackfree(G*)
__asm__(GOSYM_PREFIX "runtime.stackfree");
// stackfree frees the stack of a g.
void
stackfree(G* gp)
{
#ifdef USING_SPLIT_STACK
__splitstack_releasecontext((void*)(&gp->stackcontext[0]));
#else
// If gcstacksize is 0, the stack is allocated by libc and will be
// released when the thread exits. Otherwise, in 64-bit mode it was
// allocated using sysAlloc and in 32-bit mode it was allocated
// using garbage collected memory.
if (gp->gcstacksize != 0) {
if (sizeof(void*) == 8) {
runtime_sysFree(gp->gcinitialsp, gp->gcstacksize, &getMemstats()->stacks_sys);
}
gp->gcinitialsp = nil;
gp->gcstacksize = 0;
}
#endif
}
void resetNewG(G*, void **, uintptr*)
__asm__(GOSYM_PREFIX "runtime.resetNewG");
// Reset stack information for g pulled out of the cache to start a
// new goroutine.
void
resetNewG(G *newg, void **sp, uintptr *spsize)
{
#ifdef USING_SPLIT_STACK
int dont_block_signals = 0;
size_t ss_spsize;
*sp = __splitstack_resetcontext((void*)(&newg->stackcontext[0]), &ss_spsize);
*spsize = ss_spsize;
__splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
&dont_block_signals, nil);
#else
*sp = newg->gcinitialsp;
*spsize = newg->gcstacksize;
if(*spsize == 0)
runtime_throw("bad spsize in resetNewG");
newg->gcnextsp = (uintptr)(*sp);
newg->gcnextsp2 = (uintptr)(newg->gcinitialsp2);
#endif
}