2015-08-28 17:33:40 +02:00

436 lines
7.9 KiB
C

/* SysV FPU-related code (for systems not otherwise supported).
Copyright (C) 2005-2015 Free Software Foundation, Inc.
Contributed by Francois-Xavier Coudert <coudert@clipper.ens.fr>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* FPU-related code for SysV platforms with fpsetmask(). */
/* BSD and Solaris systems have slightly different types and functions
naming. We deal with these here, to simplify the code below. */
#if HAVE_FP_EXCEPT
# define FP_EXCEPT_TYPE fp_except
#elif HAVE_FP_EXCEPT_T
# define FP_EXCEPT_TYPE fp_except_t
#else
choke me
#endif
#if HAVE_FP_RND
# define FP_RND_TYPE fp_rnd
#elif HAVE_FP_RND_T
# define FP_RND_TYPE fp_rnd_t
#else
choke me
#endif
#if HAVE_FPSETSTICKY
# define FPSETSTICKY fpsetsticky
#elif HAVE_FPRESETSTICKY
# define FPSETSTICKY fpresetsticky
#else
choke me
#endif
void
set_fpu_trap_exceptions (int trap, int notrap)
{
FP_EXCEPT_TYPE cw = fpgetmask();
#ifdef FP_X_INV
if (trap & GFC_FPE_INVALID)
cw |= FP_X_INV;
if (notrap & GFC_FPE_INVALID)
cw &= ~FP_X_INV;
#endif
#ifdef FP_X_DNML
if (trap & GFC_FPE_DENORMAL)
cw |= FP_X_DNML;
if (notrap & GFC_FPE_DENORMAL)
cw &= ~FP_X_DNML;
#endif
#ifdef FP_X_DZ
if (trap & GFC_FPE_ZERO)
cw |= FP_X_DZ;
if (notrap & GFC_FPE_ZERO)
cw &= ~FP_X_DZ;
#endif
#ifdef FP_X_OFL
if (trap & GFC_FPE_OVERFLOW)
cw |= FP_X_OFL;
if (notrap & GFC_FPE_OVERFLOW)
cw &= ~FP_X_OFL;
#endif
#ifdef FP_X_UFL
if (trap & GFC_FPE_UNDERFLOW)
cw |= FP_X_UFL;
if (notrap & GFC_FPE_UNDERFLOW)
cw &= ~FP_X_UFL;
#endif
#ifdef FP_X_IMP
if (trap & GFC_FPE_INEXACT)
cw |= FP_X_IMP;
if (notrap & GFC_FPE_INEXACT)
cw &= ~FP_X_IMP;
#endif
fpsetmask(cw);
}
int
get_fpu_trap_exceptions (void)
{
int res = 0;
FP_EXCEPT_TYPE cw = fpgetmask();
#ifdef FP_X_INV
if (cw & FP_X_INV) res |= GFC_FPE_INVALID;
#endif
#ifdef FP_X_DNML
if (cw & FP_X_DNML) res |= GFC_FPE_DENORMAL;
#endif
#ifdef FP_X_DZ
if (cw & FP_X_DZ) res |= GFC_FPE_ZERO;
#endif
#ifdef FP_X_OFL
if (cw & FP_X_OFL) res |= GFC_FPE_OVERFLOW;
#endif
#ifdef FP_X_UFL
if (cw & FP_X_UFL) res |= GFC_FPE_UNDERFLOW;
#endif
#ifdef FP_X_IMP
if (cw & FP_X_IMP) res |= GFC_FPE_INEXACT;
#endif
return res;
}
int
support_fpu_trap (int flag)
{
return support_fpu_flag (flag);
}
void
set_fpu (void)
{
#ifndef FP_X_INV
if (options.fpe & GFC_FPE_INVALID)
estr_write ("Fortran runtime warning: IEEE 'invalid operation' "
"exception not supported.\n");
#endif
#ifndef FP_X_DNML
if (options.fpe & GFC_FPE_DENORMAL)
estr_write ("Fortran runtime warning: Floating point 'denormal operand' "
"exception not supported.\n");
#endif
#ifndef FP_X_DZ
if (options.fpe & GFC_FPE_ZERO)
estr_write ("Fortran runtime warning: IEEE 'division by zero' "
"exception not supported.\n");
#endif
#ifndef FP_X_OFL
if (options.fpe & GFC_FPE_OVERFLOW)
estr_write ("Fortran runtime warning: IEEE 'overflow' "
"exception not supported.\n");
#endif
#ifndef FP_X_UFL
if (options.fpe & GFC_FPE_UNDERFLOW)
estr_write ("Fortran runtime warning: IEEE 'underflow' "
"exception not supported.\n");
#endif
#ifndef FP_X_IMP
if (options.fpe & GFC_FPE_INEXACT)
estr_write ("Fortran runtime warning: IEEE 'inexact' "
"exception not supported.\n");
#endif
set_fpu_trap_exceptions (options.fpe, 0);
}
int
get_fpu_except_flags (void)
{
int result;
FP_EXCEPT_TYPE set_excepts;
result = 0;
set_excepts = fpgetsticky ();
#ifdef FP_X_INV
if (set_excepts & FP_X_INV)
result |= GFC_FPE_INVALID;
#endif
#ifdef FP_X_DZ
if (set_excepts & FP_X_DZ)
result |= GFC_FPE_ZERO;
#endif
#ifdef FP_X_OFL
if (set_excepts & FP_X_OFL)
result |= GFC_FPE_OVERFLOW;
#endif
#ifdef FP_X_UFL
if (set_excepts & FP_X_UFL)
result |= GFC_FPE_UNDERFLOW;
#endif
#ifdef FP_X_DNML
if (set_excepts & FP_X_DNML)
result |= GFC_FPE_DENORMAL;
#endif
#ifdef FP_X_IMP
if (set_excepts & FP_X_IMP)
result |= GFC_FPE_INEXACT;
#endif
return result;
}
void
set_fpu_except_flags (int set, int clear)
{
FP_EXCEPT_TYPE flags;
flags = fpgetsticky ();
#ifdef FP_X_INV
if (set & GFC_FPE_INVALID)
flags |= FP_X_INV;
if (clear & GFC_FPE_INVALID)
flags &= ~FP_X_INV;
#endif
#ifdef FP_X_DZ
if (set & GFC_FPE_ZERO)
flags |= FP_X_DZ;
if (clear & GFC_FPE_ZERO)
flags &= ~FP_X_DZ;
#endif
#ifdef FP_X_OFL
if (set & GFC_FPE_OVERFLOW)
flags |= FP_X_OFL;
if (clear & GFC_FPE_OVERFLOW)
flags &= ~FP_X_OFL;
#endif
#ifdef FP_X_UFL
if (set & GFC_FPE_UNDERFLOW)
flags |= FP_X_UFL;
if (clear & GFC_FPE_UNDERFLOW)
flags &= ~FP_X_UFL;
#endif
#ifdef FP_X_DNML
if (set & GFC_FPE_DENORMAL)
flags |= FP_X_DNML;
if (clear & GFC_FPE_DENORMAL)
flags &= ~FP_X_DNML;
#endif
#ifdef FP_X_IMP
if (set & GFC_FPE_INEXACT)
flags |= FP_X_IMP;
if (clear & GFC_FPE_INEXACT)
flags &= ~FP_X_IMP;
#endif
FPSETSTICKY (flags);
}
int
support_fpu_flag (int flag)
{
if (flag & GFC_FPE_INVALID)
{
#ifndef FP_X_INV
return 0;
#endif
}
else if (flag & GFC_FPE_ZERO)
{
#ifndef FP_X_DZ
return 0;
#endif
}
else if (flag & GFC_FPE_OVERFLOW)
{
#ifndef FP_X_OFL
return 0;
#endif
}
else if (flag & GFC_FPE_UNDERFLOW)
{
#ifndef FP_X_UFL
return 0;
#endif
}
else if (flag & GFC_FPE_DENORMAL)
{
#ifndef FP_X_DNML
return 0;
#endif
}
else if (flag & GFC_FPE_INEXACT)
{
#ifndef FP_X_IMP
return 0;
#endif
}
return 1;
}
int
get_fpu_rounding_mode (void)
{
switch (fpgetround ())
{
case FP_RN:
return GFC_FPE_TONEAREST;
case FP_RP:
return GFC_FPE_UPWARD;
case FP_RM:
return GFC_FPE_DOWNWARD;
case FP_RZ:
return GFC_FPE_TOWARDZERO;
default:
return 0; /* Should be unreachable. */
}
}
void
set_fpu_rounding_mode (int mode)
{
FP_RND_TYPE rnd_mode;
switch (mode)
{
case GFC_FPE_TONEAREST:
rnd_mode = FP_RN;
break;
case GFC_FPE_UPWARD:
rnd_mode = FP_RP;
break;
case GFC_FPE_DOWNWARD:
rnd_mode = FP_RM;
break;
case GFC_FPE_TOWARDZERO:
rnd_mode = FP_RZ;
break;
default:
return; /* Should be unreachable. */
}
fpsetround (rnd_mode);
}
int
support_fpu_rounding_mode (int mode __attribute__((unused)))
{
return 1;
}
typedef struct
{
FP_EXCEPT_TYPE mask;
FP_EXCEPT_TYPE sticky;
FP_RND_TYPE round;
} fpu_state_t;
/* Check we can actually store the FPU state in the allocated size. */
_Static_assert (sizeof(fpu_state_t) <= (size_t) GFC_FPE_STATE_BUFFER_SIZE,
"GFC_FPE_STATE_BUFFER_SIZE is too small");
void
get_fpu_state (void *s)
{
fpu_state_t *state = s;
state->mask = fpgetmask ();
state->sticky = fpgetsticky ();
state->round = fpgetround ();
}
void
set_fpu_state (void *s)
{
fpu_state_t *state = s;
fpsetmask (state->mask);
FPSETSTICKY (state->sticky);
fpsetround (state->round);
}
int
support_fpu_underflow_control (int kind __attribute__((unused)))
{
return 0;
}
int
get_fpu_underflow_mode (void)
{
return 0;
}
void
set_fpu_underflow_mode (int gradual __attribute__((unused)))
{
}