mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 23:32:06 +00:00
170 lines
6.1 KiB
Go
170 lines
6.1 KiB
Go
// Copyright 2016 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package rsa
|
||
|
||
import (
|
||
"crypto"
|
||
"crypto/aes"
|
||
"crypto/cipher"
|
||
"crypto/rand"
|
||
"crypto/sha256"
|
||
"encoding/hex"
|
||
"fmt"
|
||
"io"
|
||
"os"
|
||
)
|
||
|
||
// RSA is able to encrypt only a very limited amount of data. In order
|
||
// to encrypt reasonable amounts of data a hybrid scheme is commonly
|
||
// used: RSA is used to encrypt a key for a symmetric primitive like
|
||
// AES-GCM.
|
||
//
|
||
// Before encrypting, data is “padded” by embedding it in a known
|
||
// structure. This is done for a number of reasons, but the most
|
||
// obvious is to ensure that the value is large enough that the
|
||
// exponentiation is larger than the modulus. (Otherwise it could be
|
||
// decrypted with a square-root.)
|
||
//
|
||
// In these designs, when using PKCS#1 v1.5, it's vitally important to
|
||
// avoid disclosing whether the received RSA message was well-formed
|
||
// (that is, whether the result of decrypting is a correctly padded
|
||
// message) because this leaks secret information.
|
||
// DecryptPKCS1v15SessionKey is designed for this situation and copies
|
||
// the decrypted, symmetric key (if well-formed) in constant-time over
|
||
// a buffer that contains a random key. Thus, if the RSA result isn't
|
||
// well-formed, the implementation uses a random key in constant time.
|
||
func ExampleDecryptPKCS1v15SessionKey() {
|
||
// crypto/rand.Reader is a good source of entropy for blinding the RSA
|
||
// operation.
|
||
rng := rand.Reader
|
||
|
||
// The hybrid scheme should use at least a 16-byte symmetric key. Here
|
||
// we read the random key that will be used if the RSA decryption isn't
|
||
// well-formed.
|
||
key := make([]byte, 32)
|
||
if _, err := io.ReadFull(rng, key); err != nil {
|
||
panic("RNG failure")
|
||
}
|
||
|
||
rsaCiphertext, _ := hex.DecodeString("aabbccddeeff")
|
||
|
||
if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil {
|
||
// Any errors that result will be “public” – meaning that they
|
||
// can be determined without any secret information. (For
|
||
// instance, if the length of key is impossible given the RSA
|
||
// public key.)
|
||
fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err)
|
||
return
|
||
}
|
||
|
||
// Given the resulting key, a symmetric scheme can be used to decrypt a
|
||
// larger ciphertext.
|
||
block, err := aes.NewCipher(key)
|
||
if err != nil {
|
||
panic("aes.NewCipher failed: " + err.Error())
|
||
}
|
||
|
||
// Since the key is random, using a fixed nonce is acceptable as the
|
||
// (key, nonce) pair will still be unique, as required.
|
||
var zeroNonce [12]byte
|
||
aead, err := cipher.NewGCM(block)
|
||
if err != nil {
|
||
panic("cipher.NewGCM failed: " + err.Error())
|
||
}
|
||
ciphertext, _ := hex.DecodeString("00112233445566")
|
||
plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil)
|
||
if err != nil {
|
||
// The RSA ciphertext was badly formed; the decryption will
|
||
// fail here because the AES-GCM key will be incorrect.
|
||
fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err)
|
||
return
|
||
}
|
||
|
||
fmt.Printf("Plaintext: %s\n", string(plaintext))
|
||
}
|
||
|
||
func ExampleSignPKCS1v15() {
|
||
// crypto/rand.Reader is a good source of entropy for blinding the RSA
|
||
// operation.
|
||
rng := rand.Reader
|
||
|
||
message := []byte("message to be signed")
|
||
|
||
// Only small messages can be signed directly; thus the hash of a
|
||
// message, rather than the message itself, is signed. This requires
|
||
// that the hash function be collision resistant. SHA-256 is the
|
||
// least-strong hash function that should be used for this at the time
|
||
// of writing (2016).
|
||
hashed := sha256.Sum256(message)
|
||
|
||
signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:])
|
||
if err != nil {
|
||
fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err)
|
||
return
|
||
}
|
||
|
||
fmt.Printf("Signature: %x\n", signature)
|
||
}
|
||
|
||
func ExampleVerifyPKCS1v15() {
|
||
message := []byte("message to be signed")
|
||
signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530")
|
||
|
||
// Only small messages can be signed directly; thus the hash of a
|
||
// message, rather than the message itself, is signed. This requires
|
||
// that the hash function be collision resistant. SHA-256 is the
|
||
// least-strong hash function that should be used for this at the time
|
||
// of writing (2016).
|
||
hashed := sha256.Sum256(message)
|
||
|
||
err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature)
|
||
if err != nil {
|
||
fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err)
|
||
return
|
||
}
|
||
|
||
// signature is a valid signature of message from the public key.
|
||
}
|
||
|
||
func ExampleEncryptOAEP() {
|
||
secretMessage := []byte("send reinforcements, we're going to advance")
|
||
label := []byte("orders")
|
||
|
||
// crypto/rand.Reader is a good source of entropy for randomizing the
|
||
// encryption function.
|
||
rng := rand.Reader
|
||
|
||
ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label)
|
||
if err != nil {
|
||
fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err)
|
||
return
|
||
}
|
||
|
||
// Since encryption is a randomized function, ciphertext will be
|
||
// different each time.
|
||
fmt.Printf("Ciphertext: %x\n", ciphertext)
|
||
}
|
||
|
||
func ExampleDecryptOAEP() {
|
||
ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460")
|
||
label := []byte("orders")
|
||
|
||
// crypto/rand.Reader is a good source of entropy for blinding the RSA
|
||
// operation.
|
||
rng := rand.Reader
|
||
|
||
plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label)
|
||
if err != nil {
|
||
fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err)
|
||
return
|
||
}
|
||
|
||
fmt.Printf("Plaintext: %s\n", string(plaintext))
|
||
|
||
// Remember that encryption only provides confidentiality. The
|
||
// ciphertext should be signed before authenticity is assumed and, even
|
||
// then, consider that messages might be reordered.
|
||
}
|