mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-28 05:51:04 +00:00
306 lines
5.4 KiB
Go
306 lines
5.4 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This file provides Go implementations of elementary multi-precision
|
|
// arithmetic operations on word vectors. Needed for platforms without
|
|
// assembly implementations of these routines.
|
|
|
|
package big
|
|
|
|
// A Word represents a single digit of a multi-precision unsigned integer.
|
|
type Word uintptr
|
|
|
|
const (
|
|
// Compute the size _S of a Word in bytes.
|
|
_m = ^Word(0)
|
|
_logS = _m>>8&1 + _m>>16&1 + _m>>32&1
|
|
_S = 1 << _logS
|
|
|
|
_W = _S << 3 // word size in bits
|
|
_B = 1 << _W // digit base
|
|
_M = _B - 1 // digit mask
|
|
|
|
_W2 = _W / 2 // half word size in bits
|
|
_B2 = 1 << _W2 // half digit base
|
|
_M2 = _B2 - 1 // half digit mask
|
|
)
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Elementary operations on words
|
|
//
|
|
// These operations are used by the vector operations below.
|
|
|
|
// z1<<_W + z0 = x+y+c, with c == 0 or 1
|
|
func addWW_g(x, y, c Word) (z1, z0 Word) {
|
|
yc := y + c
|
|
z0 = x + yc
|
|
if z0 < x || yc < y {
|
|
z1 = 1
|
|
}
|
|
return
|
|
}
|
|
|
|
// z1<<_W + z0 = x-y-c, with c == 0 or 1
|
|
func subWW_g(x, y, c Word) (z1, z0 Word) {
|
|
yc := y + c
|
|
z0 = x - yc
|
|
if z0 > x || yc < y {
|
|
z1 = 1
|
|
}
|
|
return
|
|
}
|
|
|
|
// z1<<_W + z0 = x*y
|
|
// Adapted from Warren, Hacker's Delight, p. 132.
|
|
func mulWW_g(x, y Word) (z1, z0 Word) {
|
|
x0 := x & _M2
|
|
x1 := x >> _W2
|
|
y0 := y & _M2
|
|
y1 := y >> _W2
|
|
w0 := x0 * y0
|
|
t := x1*y0 + w0>>_W2
|
|
w1 := t & _M2
|
|
w2 := t >> _W2
|
|
w1 += x0 * y1
|
|
z1 = x1*y1 + w2 + w1>>_W2
|
|
z0 = x * y
|
|
return
|
|
}
|
|
|
|
// z1<<_W + z0 = x*y + c
|
|
func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
|
|
z1, zz0 := mulWW_g(x, y)
|
|
if z0 = zz0 + c; z0 < zz0 {
|
|
z1++
|
|
}
|
|
return
|
|
}
|
|
|
|
// Length of x in bits.
|
|
func bitLen_g(x Word) (n int) {
|
|
for ; x >= 0x8000; x >>= 16 {
|
|
n += 16
|
|
}
|
|
if x >= 0x80 {
|
|
x >>= 8
|
|
n += 8
|
|
}
|
|
if x >= 0x8 {
|
|
x >>= 4
|
|
n += 4
|
|
}
|
|
if x >= 0x2 {
|
|
x >>= 2
|
|
n += 2
|
|
}
|
|
if x >= 0x1 {
|
|
n++
|
|
}
|
|
return
|
|
}
|
|
|
|
// log2 computes the integer binary logarithm of x.
|
|
// The result is the integer n for which 2^n <= x < 2^(n+1).
|
|
// If x == 0, the result is -1.
|
|
func log2(x Word) int {
|
|
return bitLen(x) - 1
|
|
}
|
|
|
|
// nlz returns the number of leading zeros in x.
|
|
func nlz(x Word) uint {
|
|
return uint(_W - bitLen(x))
|
|
}
|
|
|
|
// nlz64 returns the number of leading zeros in x.
|
|
func nlz64(x uint64) uint {
|
|
switch _W {
|
|
case 32:
|
|
w := x >> 32
|
|
if w == 0 {
|
|
return 32 + nlz(Word(x))
|
|
}
|
|
return nlz(Word(w))
|
|
case 64:
|
|
return nlz(Word(x))
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
// q = (u1<<_W + u0 - r)/y
|
|
// Adapted from Warren, Hacker's Delight, p. 152.
|
|
func divWW_g(u1, u0, v Word) (q, r Word) {
|
|
if u1 >= v {
|
|
return 1<<_W - 1, 1<<_W - 1
|
|
}
|
|
|
|
s := nlz(v)
|
|
v <<= s
|
|
|
|
vn1 := v >> _W2
|
|
vn0 := v & _M2
|
|
un32 := u1<<s | u0>>(_W-s)
|
|
un10 := u0 << s
|
|
un1 := un10 >> _W2
|
|
un0 := un10 & _M2
|
|
q1 := un32 / vn1
|
|
rhat := un32 - q1*vn1
|
|
|
|
for q1 >= _B2 || q1*vn0 > _B2*rhat+un1 {
|
|
q1--
|
|
rhat += vn1
|
|
if rhat >= _B2 {
|
|
break
|
|
}
|
|
}
|
|
|
|
un21 := un32*_B2 + un1 - q1*v
|
|
q0 := un21 / vn1
|
|
rhat = un21 - q0*vn1
|
|
|
|
for q0 >= _B2 || q0*vn0 > _B2*rhat+un0 {
|
|
q0--
|
|
rhat += vn1
|
|
if rhat >= _B2 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s
|
|
}
|
|
|
|
// Keep for performance debugging.
|
|
// Using addWW_g is likely slower.
|
|
const use_addWW_g = false
|
|
|
|
// The resulting carry c is either 0 or 1.
|
|
func addVV_g(z, x, y []Word) (c Word) {
|
|
if use_addWW_g {
|
|
for i := range z {
|
|
c, z[i] = addWW_g(x[i], y[i], c)
|
|
}
|
|
return
|
|
}
|
|
|
|
for i, xi := range x[:len(z)] {
|
|
yi := y[i]
|
|
zi := xi + yi + c
|
|
z[i] = zi
|
|
// see "Hacker's Delight", section 2-12 (overflow detection)
|
|
c = (xi&yi | (xi|yi)&^zi) >> (_W - 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
// The resulting carry c is either 0 or 1.
|
|
func subVV_g(z, x, y []Word) (c Word) {
|
|
if use_addWW_g {
|
|
for i := range z {
|
|
c, z[i] = subWW_g(x[i], y[i], c)
|
|
}
|
|
return
|
|
}
|
|
|
|
for i, xi := range x[:len(z)] {
|
|
yi := y[i]
|
|
zi := xi - yi - c
|
|
z[i] = zi
|
|
// see "Hacker's Delight", section 2-12 (overflow detection)
|
|
c = (yi&^xi | (yi|^xi)&zi) >> (_W - 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
// The resulting carry c is either 0 or 1.
|
|
func addVW_g(z, x []Word, y Word) (c Word) {
|
|
if use_addWW_g {
|
|
c = y
|
|
for i := range z {
|
|
c, z[i] = addWW_g(x[i], c, 0)
|
|
}
|
|
return
|
|
}
|
|
|
|
c = y
|
|
for i, xi := range x[:len(z)] {
|
|
zi := xi + c
|
|
z[i] = zi
|
|
c = xi &^ zi >> (_W - 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
func subVW_g(z, x []Word, y Word) (c Word) {
|
|
if use_addWW_g {
|
|
c = y
|
|
for i := range z {
|
|
c, z[i] = subWW_g(x[i], c, 0)
|
|
}
|
|
return
|
|
}
|
|
|
|
c = y
|
|
for i, xi := range x[:len(z)] {
|
|
zi := xi - c
|
|
z[i] = zi
|
|
c = (zi &^ xi) >> (_W - 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
func shlVU_g(z, x []Word, s uint) (c Word) {
|
|
if n := len(z); n > 0 {
|
|
ŝ := _W - s
|
|
w1 := x[n-1]
|
|
c = w1 >> ŝ
|
|
for i := n - 1; i > 0; i-- {
|
|
w := w1
|
|
w1 = x[i-1]
|
|
z[i] = w<<s | w1>>ŝ
|
|
}
|
|
z[0] = w1 << s
|
|
}
|
|
return
|
|
}
|
|
|
|
func shrVU_g(z, x []Word, s uint) (c Word) {
|
|
if n := len(z); n > 0 {
|
|
ŝ := _W - s
|
|
w1 := x[0]
|
|
c = w1 << ŝ
|
|
for i := 0; i < n-1; i++ {
|
|
w := w1
|
|
w1 = x[i+1]
|
|
z[i] = w>>s | w1<<ŝ
|
|
}
|
|
z[n-1] = w1 >> s
|
|
}
|
|
return
|
|
}
|
|
|
|
func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
|
|
c = r
|
|
for i := range z {
|
|
c, z[i] = mulAddWWW_g(x[i], y, c)
|
|
}
|
|
return
|
|
}
|
|
|
|
// TODO(gri) Remove use of addWW_g here and then we can remove addWW_g and subWW_g.
|
|
func addMulVVW_g(z, x []Word, y Word) (c Word) {
|
|
for i := range z {
|
|
z1, z0 := mulAddWWW_g(x[i], y, z[i])
|
|
c, z[i] = addWW_g(z0, c, 0)
|
|
c += z1
|
|
}
|
|
return
|
|
}
|
|
|
|
func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) {
|
|
r = xn
|
|
for i := len(z) - 1; i >= 0; i-- {
|
|
z[i], r = divWW_g(r, x[i], y)
|
|
}
|
|
return
|
|
}
|