Retro68/gcc/libsanitizer/sanitizer_common/sanitizer_coverage_libcdep.cc
2017-04-10 13:32:00 +02:00

957 lines
32 KiB
C++

//===-- sanitizer_coverage.cc ---------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Sanitizer Coverage.
// This file implements run-time support for a poor man's coverage tool.
//
// Compiler instrumentation:
// For every interesting basic block the compiler injects the following code:
// if (Guard < 0) {
// __sanitizer_cov(&Guard);
// }
// At the module start up time __sanitizer_cov_module_init sets the guards
// to consecutive negative numbers (-1, -2, -3, ...).
// It's fine to call __sanitizer_cov more than once for a given block.
//
// Run-time:
// - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC).
// and atomically set Guard to -Guard.
// - __sanitizer_cov_dump: dump the coverage data to disk.
// For every module of the current process that has coverage data
// this will create a file module_name.PID.sancov.
//
// The file format is simple: the first 8 bytes is the magic,
// one of 0xC0BFFFFFFFFFFF64 and 0xC0BFFFFFFFFFFF32. The last byte of the
// magic defines the size of the following offsets.
// The rest of the data is the offsets in the module.
//
// Eventually, this coverage implementation should be obsoleted by a more
// powerful general purpose Clang/LLVM coverage instrumentation.
// Consider this implementation as prototype.
//
// FIXME: support (or at least test with) dlclose.
//===----------------------------------------------------------------------===//
#include "sanitizer_allocator_internal.h"
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include "sanitizer_symbolizer.h"
#include "sanitizer_flags.h"
static const u64 kMagic64 = 0xC0BFFFFFFFFFFF64ULL;
static const u64 kMagic32 = 0xC0BFFFFFFFFFFF32ULL;
static atomic_uint32_t dump_once_guard; // Ensure that CovDump runs only once.
static atomic_uintptr_t coverage_counter;
static atomic_uintptr_t caller_callee_counter;
static void ResetGlobalCounters() {
return atomic_store(&coverage_counter, 0, memory_order_relaxed);
return atomic_store(&caller_callee_counter, 0, memory_order_relaxed);
}
// pc_array is the array containing the covered PCs.
// To make the pc_array thread- and async-signal-safe it has to be large enough.
// 128M counters "ought to be enough for anybody" (4M on 32-bit).
// With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file.
// In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping()
// dump current memory layout to another file.
static bool cov_sandboxed = false;
static fd_t cov_fd = kInvalidFd;
static unsigned int cov_max_block_size = 0;
static bool coverage_enabled = false;
static const char *coverage_dir;
namespace __sanitizer {
class CoverageData {
public:
void Init();
void Enable();
void Disable();
void ReInit();
void BeforeFork();
void AfterFork(int child_pid);
void Extend(uptr npcs);
void Add(uptr pc, u32 *guard);
void IndirCall(uptr caller, uptr callee, uptr callee_cache[],
uptr cache_size);
void DumpCallerCalleePairs();
void DumpTrace();
void DumpAsBitSet();
void DumpCounters();
void DumpOffsets();
void DumpAll();
ALWAYS_INLINE
void TraceBasicBlock(s32 *id);
void InitializeGuardArray(s32 *guards);
void InitializeGuards(s32 *guards, uptr n, const char *module_name,
uptr caller_pc);
void InitializeCounters(u8 *counters, uptr n);
void ReinitializeGuards();
uptr GetNumberOf8bitCounters();
uptr Update8bitCounterBitsetAndClearCounters(u8 *bitset);
uptr *data();
uptr size();
private:
void DirectOpen();
void UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end);
// Maximal size pc array may ever grow.
// We MmapNoReserve this space to ensure that the array is contiguous.
static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64(
1 << (SANITIZER_ANDROID ? 24 : (SANITIZER_WINDOWS ? 27 : 26)),
1 << 27);
// The amount file mapping for the pc array is grown by.
static const uptr kPcArrayMmapSize = 64 * 1024;
// pc_array is allocated with MmapNoReserveOrDie and so it uses only as
// much RAM as it really needs.
uptr *pc_array;
// Index of the first available pc_array slot.
atomic_uintptr_t pc_array_index;
// Array size.
atomic_uintptr_t pc_array_size;
// Current file mapped size of the pc array.
uptr pc_array_mapped_size;
// Descriptor of the file mapped pc array.
fd_t pc_fd;
// Vector of coverage guard arrays, protected by mu.
InternalMmapVectorNoCtor<s32*> guard_array_vec;
struct NamedPcRange {
const char *copied_module_name;
uptr beg, end; // elements [beg,end) in pc_array.
};
// Vector of module and compilation unit pc ranges.
InternalMmapVectorNoCtor<NamedPcRange> comp_unit_name_vec;
InternalMmapVectorNoCtor<NamedPcRange> module_name_vec;
struct CounterAndSize {
u8 *counters;
uptr n;
};
InternalMmapVectorNoCtor<CounterAndSize> counters_vec;
uptr num_8bit_counters;
// Caller-Callee (cc) array, size and current index.
static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24);
uptr **cc_array;
atomic_uintptr_t cc_array_index;
atomic_uintptr_t cc_array_size;
// Tracing event array, size and current pointer.
// We record all events (basic block entries) in a global buffer of u32
// values. Each such value is the index in pc_array.
// So far the tracing is highly experimental:
// - not thread-safe;
// - does not support long traces;
// - not tuned for performance.
static const uptr kTrEventArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 30);
u32 *tr_event_array;
uptr tr_event_array_size;
u32 *tr_event_pointer;
static const uptr kTrPcArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 27);
StaticSpinMutex mu;
};
static CoverageData coverage_data;
void CovUpdateMapping(const char *path, uptr caller_pc = 0);
void CoverageData::DirectOpen() {
InternalScopedString path(kMaxPathLength);
internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw",
coverage_dir, internal_getpid());
pc_fd = OpenFile(path.data(), RdWr);
if (pc_fd == kInvalidFd) {
Report("Coverage: failed to open %s for reading/writing\n", path.data());
Die();
}
pc_array_mapped_size = 0;
CovUpdateMapping(coverage_dir);
}
void CoverageData::Init() {
pc_fd = kInvalidFd;
}
void CoverageData::Enable() {
if (pc_array)
return;
pc_array = reinterpret_cast<uptr *>(
MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit"));
atomic_store(&pc_array_index, 0, memory_order_relaxed);
if (common_flags()->coverage_direct) {
atomic_store(&pc_array_size, 0, memory_order_relaxed);
} else {
atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed);
}
cc_array = reinterpret_cast<uptr **>(MmapNoReserveOrDie(
sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array"));
atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed);
atomic_store(&cc_array_index, 0, memory_order_relaxed);
// Allocate tr_event_array with a guard page at the end.
tr_event_array = reinterpret_cast<u32 *>(MmapNoReserveOrDie(
sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity(),
"CovInit::tr_event_array"));
MprotectNoAccess(
reinterpret_cast<uptr>(&tr_event_array[kTrEventArrayMaxSize]),
GetMmapGranularity());
tr_event_array_size = kTrEventArrayMaxSize;
tr_event_pointer = tr_event_array;
num_8bit_counters = 0;
}
void CoverageData::InitializeGuardArray(s32 *guards) {
Enable(); // Make sure coverage is enabled at this point.
s32 n = guards[0];
for (s32 j = 1; j <= n; j++) {
uptr idx = atomic_load_relaxed(&pc_array_index);
atomic_store_relaxed(&pc_array_index, idx + 1);
guards[j] = -static_cast<s32>(idx + 1);
}
}
void CoverageData::Disable() {
if (pc_array) {
UnmapOrDie(pc_array, sizeof(uptr) * kPcArrayMaxSize);
pc_array = nullptr;
}
if (cc_array) {
UnmapOrDie(cc_array, sizeof(uptr *) * kCcArrayMaxSize);
cc_array = nullptr;
}
if (tr_event_array) {
UnmapOrDie(tr_event_array,
sizeof(tr_event_array[0]) * kTrEventArrayMaxSize +
GetMmapGranularity());
tr_event_array = nullptr;
tr_event_pointer = nullptr;
}
if (pc_fd != kInvalidFd) {
CloseFile(pc_fd);
pc_fd = kInvalidFd;
}
}
void CoverageData::ReinitializeGuards() {
// Assuming single thread.
atomic_store(&pc_array_index, 0, memory_order_relaxed);
for (uptr i = 0; i < guard_array_vec.size(); i++)
InitializeGuardArray(guard_array_vec[i]);
}
void CoverageData::ReInit() {
Disable();
if (coverage_enabled) {
if (common_flags()->coverage_direct) {
// In memory-mapped mode we must extend the new file to the known array
// size.
uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
uptr npcs = size / sizeof(uptr);
Enable();
if (size) Extend(npcs);
if (coverage_enabled) CovUpdateMapping(coverage_dir);
} else {
Enable();
}
}
// Re-initialize the guards.
// We are single-threaded now, no need to grab any lock.
CHECK_EQ(atomic_load(&pc_array_index, memory_order_relaxed), 0);
ReinitializeGuards();
}
void CoverageData::BeforeFork() {
mu.Lock();
}
void CoverageData::AfterFork(int child_pid) {
// We are single-threaded so it's OK to release the lock early.
mu.Unlock();
if (child_pid == 0) ReInit();
}
// Extend coverage PC array to fit additional npcs elements.
void CoverageData::Extend(uptr npcs) {
if (!common_flags()->coverage_direct) return;
SpinMutexLock l(&mu);
uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
size += npcs * sizeof(uptr);
if (coverage_enabled && size > pc_array_mapped_size) {
if (pc_fd == kInvalidFd) DirectOpen();
CHECK_NE(pc_fd, kInvalidFd);
uptr new_mapped_size = pc_array_mapped_size;
while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize;
CHECK_LE(new_mapped_size, sizeof(uptr) * kPcArrayMaxSize);
// Extend the file and map the new space at the end of pc_array.
uptr res = internal_ftruncate(pc_fd, new_mapped_size);
int err;
if (internal_iserror(res, &err)) {
Printf("failed to extend raw coverage file: %d\n", err);
Die();
}
uptr next_map_base = ((uptr)pc_array) + pc_array_mapped_size;
void *p = MapWritableFileToMemory((void *)next_map_base,
new_mapped_size - pc_array_mapped_size,
pc_fd, pc_array_mapped_size);
CHECK_EQ((uptr)p, next_map_base);
pc_array_mapped_size = new_mapped_size;
}
atomic_store(&pc_array_size, size, memory_order_release);
}
void CoverageData::InitializeCounters(u8 *counters, uptr n) {
if (!counters) return;
CHECK_EQ(reinterpret_cast<uptr>(counters) % 16, 0);
n = RoundUpTo(n, 16); // The compiler must ensure that counters is 16-aligned.
SpinMutexLock l(&mu);
counters_vec.push_back({counters, n});
num_8bit_counters += n;
}
void CoverageData::UpdateModuleNameVec(uptr caller_pc, uptr range_beg,
uptr range_end) {
auto sym = Symbolizer::GetOrInit();
if (!sym)
return;
const char *module_name = sym->GetModuleNameForPc(caller_pc);
if (!module_name) return;
if (module_name_vec.empty() ||
module_name_vec.back().copied_module_name != module_name)
module_name_vec.push_back({module_name, range_beg, range_end});
else
module_name_vec.back().end = range_end;
}
void CoverageData::InitializeGuards(s32 *guards, uptr n,
const char *comp_unit_name,
uptr caller_pc) {
// The array 'guards' has n+1 elements, we use the element zero
// to store 'n'.
CHECK_LT(n, 1 << 30);
guards[0] = static_cast<s32>(n);
InitializeGuardArray(guards);
SpinMutexLock l(&mu);
uptr range_end = atomic_load(&pc_array_index, memory_order_relaxed);
uptr range_beg = range_end - n;
comp_unit_name_vec.push_back({comp_unit_name, range_beg, range_end});
guard_array_vec.push_back(guards);
UpdateModuleNameVec(caller_pc, range_beg, range_end);
}
static const uptr kBundleCounterBits = 16;
// When coverage_order_pcs==true and SANITIZER_WORDSIZE==64
// we insert the global counter into the first 16 bits of the PC.
uptr BundlePcAndCounter(uptr pc, uptr counter) {
if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
return pc;
static const uptr kMaxCounter = (1 << kBundleCounterBits) - 1;
if (counter > kMaxCounter)
counter = kMaxCounter;
CHECK_EQ(0, pc >> (SANITIZER_WORDSIZE - kBundleCounterBits));
return pc | (counter << (SANITIZER_WORDSIZE - kBundleCounterBits));
}
uptr UnbundlePc(uptr bundle) {
if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
return bundle;
return (bundle << kBundleCounterBits) >> kBundleCounterBits;
}
uptr UnbundleCounter(uptr bundle) {
if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
return 0;
return bundle >> (SANITIZER_WORDSIZE - kBundleCounterBits);
}
// If guard is negative, atomically set it to -guard and store the PC in
// pc_array.
void CoverageData::Add(uptr pc, u32 *guard) {
atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard);
s32 guard_value = atomic_load(atomic_guard, memory_order_relaxed);
if (guard_value >= 0) return;
atomic_store(atomic_guard, -guard_value, memory_order_relaxed);
if (!pc_array) return;
uptr idx = -guard_value - 1;
if (idx >= atomic_load(&pc_array_index, memory_order_acquire))
return; // May happen after fork when pc_array_index becomes 0.
CHECK_LT(idx * sizeof(uptr),
atomic_load(&pc_array_size, memory_order_acquire));
uptr counter = atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed);
pc_array[idx] = BundlePcAndCounter(pc, counter);
}
// Registers a pair caller=>callee.
// When a given caller is seen for the first time, the callee_cache is added
// to the global array cc_array, callee_cache[0] is set to caller and
// callee_cache[1] is set to cache_size.
// Then we are trying to add callee to callee_cache [2,cache_size) if it is
// not there yet.
// If the cache is full we drop the callee (may want to fix this later).
void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[],
uptr cache_size) {
if (!cc_array) return;
atomic_uintptr_t *atomic_callee_cache =
reinterpret_cast<atomic_uintptr_t *>(callee_cache);
uptr zero = 0;
if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller,
memory_order_seq_cst)) {
uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed);
CHECK_LT(idx * sizeof(uptr),
atomic_load(&cc_array_size, memory_order_acquire));
callee_cache[1] = cache_size;
cc_array[idx] = callee_cache;
}
CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller);
for (uptr i = 2; i < cache_size; i++) {
uptr was = 0;
if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee,
memory_order_seq_cst)) {
atomic_fetch_add(&caller_callee_counter, 1, memory_order_relaxed);
return;
}
if (was == callee) // Already have this callee.
return;
}
}
uptr CoverageData::GetNumberOf8bitCounters() {
return num_8bit_counters;
}
// Map every 8bit counter to a 8-bit bitset and clear the counter.
uptr CoverageData::Update8bitCounterBitsetAndClearCounters(u8 *bitset) {
uptr num_new_bits = 0;
uptr cur = 0;
// For better speed we map 8 counters to 8 bytes of bitset at once.
static const uptr kBatchSize = 8;
CHECK_EQ(reinterpret_cast<uptr>(bitset) % kBatchSize, 0);
for (uptr i = 0, len = counters_vec.size(); i < len; i++) {
u8 *c = counters_vec[i].counters;
uptr n = counters_vec[i].n;
CHECK_EQ(n % 16, 0);
CHECK_EQ(cur % kBatchSize, 0);
CHECK_EQ(reinterpret_cast<uptr>(c) % kBatchSize, 0);
if (!bitset) {
internal_bzero_aligned16(c, n);
cur += n;
continue;
}
for (uptr j = 0; j < n; j += kBatchSize, cur += kBatchSize) {
CHECK_LT(cur, num_8bit_counters);
u64 *pc64 = reinterpret_cast<u64*>(c + j);
u64 *pb64 = reinterpret_cast<u64*>(bitset + cur);
u64 c64 = *pc64;
u64 old_bits_64 = *pb64;
u64 new_bits_64 = old_bits_64;
if (c64) {
*pc64 = 0;
for (uptr k = 0; k < kBatchSize; k++) {
u64 x = (c64 >> (8 * k)) & 0xff;
if (x) {
u64 bit = 0;
/**/ if (x >= 128) bit = 128;
else if (x >= 32) bit = 64;
else if (x >= 16) bit = 32;
else if (x >= 8) bit = 16;
else if (x >= 4) bit = 8;
else if (x >= 3) bit = 4;
else if (x >= 2) bit = 2;
else if (x >= 1) bit = 1;
u64 mask = bit << (8 * k);
if (!(new_bits_64 & mask)) {
num_new_bits++;
new_bits_64 |= mask;
}
}
}
*pb64 = new_bits_64;
}
}
}
CHECK_EQ(cur, num_8bit_counters);
return num_new_bits;
}
uptr *CoverageData::data() {
return pc_array;
}
uptr CoverageData::size() {
return atomic_load(&pc_array_index, memory_order_relaxed);
}
// Block layout for packed file format: header, followed by module name (no
// trailing zero), followed by data blob.
struct CovHeader {
int pid;
unsigned int module_name_length;
unsigned int data_length;
};
static void CovWritePacked(int pid, const char *module, const void *blob,
unsigned int blob_size) {
if (cov_fd == kInvalidFd) return;
unsigned module_name_length = internal_strlen(module);
CovHeader header = {pid, module_name_length, blob_size};
if (cov_max_block_size == 0) {
// Writing to a file. Just go ahead.
WriteToFile(cov_fd, &header, sizeof(header));
WriteToFile(cov_fd, module, module_name_length);
WriteToFile(cov_fd, blob, blob_size);
} else {
// Writing to a socket. We want to split the data into appropriately sized
// blocks.
InternalScopedBuffer<char> block(cov_max_block_size);
CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data());
uptr header_size_with_module = sizeof(header) + module_name_length;
CHECK_LT(header_size_with_module, cov_max_block_size);
unsigned int max_payload_size =
cov_max_block_size - header_size_with_module;
char *block_pos = block.data();
internal_memcpy(block_pos, &header, sizeof(header));
block_pos += sizeof(header);
internal_memcpy(block_pos, module, module_name_length);
block_pos += module_name_length;
char *block_data_begin = block_pos;
const char *blob_pos = (const char *)blob;
while (blob_size > 0) {
unsigned int payload_size = Min(blob_size, max_payload_size);
blob_size -= payload_size;
internal_memcpy(block_data_begin, blob_pos, payload_size);
blob_pos += payload_size;
((CovHeader *)block.data())->data_length = payload_size;
WriteToFile(cov_fd, block.data(), header_size_with_module + payload_size);
}
}
}
// If packed = false: <name>.<pid>.<sancov> (name = module name).
// If packed = true and name == 0: <pid>.<sancov>.<packed>.
// If packed = true and name != 0: <name>.<sancov>.<packed> (name is
// user-supplied).
static fd_t CovOpenFile(InternalScopedString *path, bool packed,
const char *name, const char *extension = "sancov") {
path->clear();
if (!packed) {
CHECK(name);
path->append("%s/%s.%zd.%s", coverage_dir, name, internal_getpid(),
extension);
} else {
if (!name)
path->append("%s/%zd.%s.packed", coverage_dir, internal_getpid(),
extension);
else
path->append("%s/%s.%s.packed", coverage_dir, name, extension);
}
error_t err;
fd_t fd = OpenFile(path->data(), WrOnly, &err);
if (fd == kInvalidFd)
Report("SanitizerCoverage: failed to open %s for writing (reason: %d)\n",
path->data(), err);
return fd;
}
// Dump trace PCs and trace events into two separate files.
void CoverageData::DumpTrace() {
uptr max_idx = tr_event_pointer - tr_event_array;
if (!max_idx) return;
auto sym = Symbolizer::GetOrInit();
if (!sym)
return;
InternalScopedString out(32 << 20);
for (uptr i = 0, n = size(); i < n; i++) {
const char *module_name = "<unknown>";
uptr module_address = 0;
sym->GetModuleNameAndOffsetForPC(UnbundlePc(pc_array[i]), &module_name,
&module_address);
out.append("%s 0x%zx\n", module_name, module_address);
}
InternalScopedString path(kMaxPathLength);
fd_t fd = CovOpenFile(&path, false, "trace-points");
if (fd == kInvalidFd) return;
WriteToFile(fd, out.data(), out.length());
CloseFile(fd);
fd = CovOpenFile(&path, false, "trace-compunits");
if (fd == kInvalidFd) return;
out.clear();
for (uptr i = 0; i < comp_unit_name_vec.size(); i++)
out.append("%s\n", comp_unit_name_vec[i].copied_module_name);
WriteToFile(fd, out.data(), out.length());
CloseFile(fd);
fd = CovOpenFile(&path, false, "trace-events");
if (fd == kInvalidFd) return;
uptr bytes_to_write = max_idx * sizeof(tr_event_array[0]);
u8 *event_bytes = reinterpret_cast<u8*>(tr_event_array);
// The trace file could be huge, and may not be written with a single syscall.
while (bytes_to_write) {
uptr actually_written;
if (WriteToFile(fd, event_bytes, bytes_to_write, &actually_written) &&
actually_written <= bytes_to_write) {
bytes_to_write -= actually_written;
event_bytes += actually_written;
} else {
break;
}
}
CloseFile(fd);
VReport(1, " CovDump: Trace: %zd PCs written\n", size());
VReport(1, " CovDump: Trace: %zd Events written\n", max_idx);
}
// This function dumps the caller=>callee pairs into a file as a sequence of
// lines like "module_name offset".
void CoverageData::DumpCallerCalleePairs() {
uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed);
if (!max_idx) return;
auto sym = Symbolizer::GetOrInit();
if (!sym)
return;
InternalScopedString out(32 << 20);
uptr total = 0;
for (uptr i = 0; i < max_idx; i++) {
uptr *cc_cache = cc_array[i];
CHECK(cc_cache);
uptr caller = cc_cache[0];
uptr n_callees = cc_cache[1];
const char *caller_module_name = "<unknown>";
uptr caller_module_address = 0;
sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name,
&caller_module_address);
for (uptr j = 2; j < n_callees; j++) {
uptr callee = cc_cache[j];
if (!callee) break;
total++;
const char *callee_module_name = "<unknown>";
uptr callee_module_address = 0;
sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name,
&callee_module_address);
out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name,
caller_module_address, callee_module_name,
callee_module_address);
}
}
InternalScopedString path(kMaxPathLength);
fd_t fd = CovOpenFile(&path, false, "caller-callee");
if (fd == kInvalidFd) return;
WriteToFile(fd, out.data(), out.length());
CloseFile(fd);
VReport(1, " CovDump: %zd caller-callee pairs written\n", total);
}
// Record the current PC into the event buffer.
// Every event is a u32 value (index in tr_pc_array_index) so we compute
// it once and then cache in the provided 'cache' storage.
//
// This function will eventually be inlined by the compiler.
void CoverageData::TraceBasicBlock(s32 *id) {
// Will trap here if
// 1. coverage is not enabled at run-time.
// 2. The array tr_event_array is full.
*tr_event_pointer = static_cast<u32>(*id - 1);
tr_event_pointer++;
}
void CoverageData::DumpCounters() {
if (!common_flags()->coverage_counters) return;
uptr n = coverage_data.GetNumberOf8bitCounters();
if (!n) return;
InternalScopedBuffer<u8> bitset(n);
coverage_data.Update8bitCounterBitsetAndClearCounters(bitset.data());
InternalScopedString path(kMaxPathLength);
for (uptr m = 0; m < module_name_vec.size(); m++) {
auto r = module_name_vec[m];
CHECK(r.copied_module_name);
CHECK_LE(r.beg, r.end);
CHECK_LE(r.end, size());
const char *base_name = StripModuleName(r.copied_module_name);
fd_t fd =
CovOpenFile(&path, /* packed */ false, base_name, "counters-sancov");
if (fd == kInvalidFd) return;
WriteToFile(fd, bitset.data() + r.beg, r.end - r.beg);
CloseFile(fd);
VReport(1, " CovDump: %zd counters written for '%s'\n", r.end - r.beg,
base_name);
}
}
void CoverageData::DumpAsBitSet() {
if (!common_flags()->coverage_bitset) return;
if (!size()) return;
InternalScopedBuffer<char> out(size());
InternalScopedString path(kMaxPathLength);
for (uptr m = 0; m < module_name_vec.size(); m++) {
uptr n_set_bits = 0;
auto r = module_name_vec[m];
CHECK(r.copied_module_name);
CHECK_LE(r.beg, r.end);
CHECK_LE(r.end, size());
for (uptr i = r.beg; i < r.end; i++) {
uptr pc = UnbundlePc(pc_array[i]);
out[i] = pc ? '1' : '0';
if (pc)
n_set_bits++;
}
const char *base_name = StripModuleName(r.copied_module_name);
fd_t fd = CovOpenFile(&path, /* packed */false, base_name, "bitset-sancov");
if (fd == kInvalidFd) return;
WriteToFile(fd, out.data() + r.beg, r.end - r.beg);
CloseFile(fd);
VReport(1,
" CovDump: bitset of %zd bits written for '%s', %zd bits are set\n",
r.end - r.beg, base_name, n_set_bits);
}
}
void CoverageData::DumpOffsets() {
auto sym = Symbolizer::GetOrInit();
if (!common_flags()->coverage_pcs) return;
CHECK_NE(sym, nullptr);
InternalMmapVector<uptr> offsets(0);
InternalScopedString path(kMaxPathLength);
for (uptr m = 0; m < module_name_vec.size(); m++) {
offsets.clear();
uptr num_words_for_magic = SANITIZER_WORDSIZE == 64 ? 1 : 2;
for (uptr i = 0; i < num_words_for_magic; i++)
offsets.push_back(0);
auto r = module_name_vec[m];
CHECK(r.copied_module_name);
CHECK_LE(r.beg, r.end);
CHECK_LE(r.end, size());
for (uptr i = r.beg; i < r.end; i++) {
uptr pc = UnbundlePc(pc_array[i]);
uptr counter = UnbundleCounter(pc_array[i]);
if (!pc) continue; // Not visited.
uptr offset = 0;
sym->GetModuleNameAndOffsetForPC(pc, nullptr, &offset);
offsets.push_back(BundlePcAndCounter(offset, counter));
}
CHECK_GE(offsets.size(), num_words_for_magic);
SortArray(offsets.data(), offsets.size());
for (uptr i = 0; i < offsets.size(); i++)
offsets[i] = UnbundlePc(offsets[i]);
uptr num_offsets = offsets.size() - num_words_for_magic;
u64 *magic_p = reinterpret_cast<u64*>(offsets.data());
CHECK_EQ(*magic_p, 0ULL);
// FIXME: we may want to write 32-bit offsets even in 64-mode
// if all the offsets are small enough.
*magic_p = SANITIZER_WORDSIZE == 64 ? kMagic64 : kMagic32;
const char *module_name = StripModuleName(r.copied_module_name);
if (cov_sandboxed) {
if (cov_fd != kInvalidFd) {
CovWritePacked(internal_getpid(), module_name, offsets.data(),
offsets.size() * sizeof(offsets[0]));
VReport(1, " CovDump: %zd PCs written to packed file\n", num_offsets);
}
} else {
// One file per module per process.
fd_t fd = CovOpenFile(&path, false /* packed */, module_name);
if (fd == kInvalidFd) continue;
WriteToFile(fd, offsets.data(), offsets.size() * sizeof(offsets[0]));
CloseFile(fd);
VReport(1, " CovDump: %s: %zd PCs written\n", path.data(), num_offsets);
}
}
if (cov_fd != kInvalidFd)
CloseFile(cov_fd);
}
void CoverageData::DumpAll() {
if (!coverage_enabled || common_flags()->coverage_direct) return;
if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed))
return;
DumpAsBitSet();
DumpCounters();
DumpTrace();
DumpOffsets();
DumpCallerCalleePairs();
}
void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
if (!args) return;
if (!coverage_enabled) return;
cov_sandboxed = args->coverage_sandboxed;
if (!cov_sandboxed) return;
cov_max_block_size = args->coverage_max_block_size;
if (args->coverage_fd >= 0) {
cov_fd = (fd_t)args->coverage_fd;
} else {
InternalScopedString path(kMaxPathLength);
// Pre-open the file now. The sandbox won't allow us to do it later.
cov_fd = CovOpenFile(&path, true /* packed */, nullptr);
}
}
fd_t MaybeOpenCovFile(const char *name) {
CHECK(name);
if (!coverage_enabled) return kInvalidFd;
InternalScopedString path(kMaxPathLength);
return CovOpenFile(&path, true /* packed */, name);
}
void CovBeforeFork() {
coverage_data.BeforeFork();
}
void CovAfterFork(int child_pid) {
coverage_data.AfterFork(child_pid);
}
static void MaybeDumpCoverage() {
if (common_flags()->coverage)
__sanitizer_cov_dump();
}
void InitializeCoverage(bool enabled, const char *dir) {
if (coverage_enabled)
return; // May happen if two sanitizer enable coverage in the same process.
coverage_enabled = enabled;
coverage_dir = dir;
coverage_data.Init();
if (enabled) coverage_data.Enable();
if (!common_flags()->coverage_direct) Atexit(__sanitizer_cov_dump);
AddDieCallback(MaybeDumpCoverage);
}
void ReInitializeCoverage(bool enabled, const char *dir) {
coverage_enabled = enabled;
coverage_dir = dir;
coverage_data.ReInit();
}
void CoverageUpdateMapping() {
if (coverage_enabled)
CovUpdateMapping(coverage_dir);
}
} // namespace __sanitizer
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov(u32 *guard) {
coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
guard);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_with_check(u32 *guard) {
atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard);
if (static_cast<s32>(
__sanitizer::atomic_load(atomic_guard, memory_order_relaxed)) < 0)
__sanitizer_cov(guard);
}
SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) {
coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
callee, callee_cache16, 16);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() {
coverage_enabled = true;
coverage_dir = common_flags()->coverage_dir;
coverage_data.Init();
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
coverage_data.DumpAll();
}
SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_module_init(s32 *guards, uptr npcs, u8 *counters,
const char *comp_unit_name) {
coverage_data.InitializeGuards(guards, npcs, comp_unit_name, GET_CALLER_PC());
coverage_data.InitializeCounters(counters, npcs);
if (!common_flags()->coverage_direct) return;
if (SANITIZER_ANDROID && coverage_enabled) {
// dlopen/dlclose interceptors do not work on Android, so we rely on
// Extend() calls to update .sancov.map.
CovUpdateMapping(coverage_dir, GET_CALLER_PC());
}
coverage_data.Extend(npcs);
}
SANITIZER_INTERFACE_ATTRIBUTE
sptr __sanitizer_maybe_open_cov_file(const char *name) {
return (sptr)MaybeOpenCovFile(name);
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_total_unique_coverage() {
return atomic_load(&coverage_counter, memory_order_relaxed);
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_total_unique_caller_callee_pairs() {
return atomic_load(&caller_callee_counter, memory_order_relaxed);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_cov_trace_func_enter(s32 *id) {
coverage_data.TraceBasicBlock(id);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_cov_trace_basic_block(s32 *id) {
coverage_data.TraceBasicBlock(id);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_reset_coverage() {
ResetGlobalCounters();
coverage_data.ReinitializeGuards();
internal_bzero_aligned16(
coverage_data.data(),
RoundUpTo(coverage_data.size() * sizeof(coverage_data.data()[0]), 16));
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_coverage_guards(uptr **data) {
*data = coverage_data.data();
return coverage_data.size();
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_number_of_counters() {
return coverage_data.GetNumberOf8bitCounters();
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_update_counter_bitset_and_clear_counters(u8 *bitset) {
return coverage_data.Update8bitCounterBitsetAndClearCounters(bitset);
}
// Default empty implementations (weak). Users should redefine them.
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_cov_trace_cmp() {}
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_cov_trace_switch() {}
} // extern "C"