mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-03 10:49:58 +00:00
634 lines
20 KiB
Java
634 lines
20 KiB
Java
/* Float.java -- object wrapper for float
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package java.lang;
|
|
|
|
import gnu.java.lang.CPStringBuilder;
|
|
|
|
/**
|
|
* Instances of class <code>Float</code> represent primitive
|
|
* <code>float</code> values.
|
|
*
|
|
* Additionally, this class provides various helper functions and variables
|
|
* related to floats.
|
|
*
|
|
* @author Paul Fisher
|
|
* @author Andrew Haley (aph@cygnus.com)
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @author Tom Tromey (tromey@redhat.com)
|
|
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
|
|
* @since 1.0
|
|
* @status partly updated to 1.5
|
|
*/
|
|
public final class Float extends Number implements Comparable<Float>
|
|
{
|
|
/**
|
|
* Compatible with JDK 1.0+.
|
|
*/
|
|
private static final long serialVersionUID = -2671257302660747028L;
|
|
|
|
/**
|
|
* The maximum positive value a <code>double</code> may represent
|
|
* is 3.4028235e+38f.
|
|
*/
|
|
public static final float MAX_VALUE = 3.4028235e+38f;
|
|
|
|
/**
|
|
* The minimum positive value a <code>float</code> may represent
|
|
* is 1.4e-45.
|
|
*/
|
|
public static final float MIN_VALUE = 1.4e-45f;
|
|
|
|
/**
|
|
* The value of a float representation -1.0/0.0, negative infinity.
|
|
*/
|
|
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
|
|
|
|
/**
|
|
* The value of a float representation 1.0/0.0, positive infinity.
|
|
*/
|
|
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
|
|
|
|
/**
|
|
* All IEEE 754 values of NaN have the same value in Java.
|
|
*/
|
|
public static final float NaN = 0.0f / 0.0f;
|
|
|
|
/**
|
|
* The primitive type <code>float</code> is represented by this
|
|
* <code>Class</code> object.
|
|
* @since 1.1
|
|
*/
|
|
public static final Class<Float> TYPE = (Class<Float>) VMClassLoader.getPrimitiveClass('F');
|
|
|
|
/**
|
|
* The number of bits needed to represent a <code>float</code>.
|
|
* @since 1.5
|
|
*/
|
|
public static final int SIZE = 32;
|
|
|
|
/**
|
|
* Cache representation of 0
|
|
*/
|
|
private static final Float ZERO = new Float(0.0f);
|
|
|
|
/**
|
|
* Cache representation of 1
|
|
*/
|
|
private static final Float ONE = new Float(1.0f);
|
|
|
|
/**
|
|
* The immutable value of this Float.
|
|
*
|
|
* @serial the wrapped float
|
|
*/
|
|
private final float value;
|
|
|
|
/**
|
|
* Create a <code>Float</code> from the primitive <code>float</code>
|
|
* specified.
|
|
*
|
|
* @param value the <code>float</code> argument
|
|
*/
|
|
public Float(float value)
|
|
{
|
|
this.value = value;
|
|
}
|
|
|
|
/**
|
|
* Create a <code>Float</code> from the primitive <code>double</code>
|
|
* specified.
|
|
*
|
|
* @param value the <code>double</code> argument
|
|
*/
|
|
public Float(double value)
|
|
{
|
|
this.value = (float) value;
|
|
}
|
|
|
|
/**
|
|
* Create a <code>Float</code> from the specified <code>String</code>.
|
|
* This method calls <code>Float.parseFloat()</code>.
|
|
*
|
|
* @param s the <code>String</code> to convert
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
|
* <code>float</code>
|
|
* @throws NullPointerException if <code>s</code> is null
|
|
* @see #parseFloat(String)
|
|
*/
|
|
public Float(String s)
|
|
{
|
|
value = parseFloat(s);
|
|
}
|
|
|
|
/**
|
|
* Convert the <code>float</code> to a <code>String</code>.
|
|
* Floating-point string representation is fairly complex: here is a
|
|
* rundown of the possible values. "<code>[-]</code>" indicates that a
|
|
* negative sign will be printed if the value (or exponent) is negative.
|
|
* "<code><number></code>" means a string of digits ('0' to '9').
|
|
* "<code><digit></code>" means a single digit ('0' to '9').<br>
|
|
*
|
|
* <table border=1>
|
|
* <tr><th>Value of Float</th><th>String Representation</th></tr>
|
|
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
|
|
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
|
|
* <td><code>[-]number.number</code></td></tr>
|
|
* <tr><td>Other numeric value</td>
|
|
* <td><code>[-]<digit>.<number>
|
|
* E[-]<number></code></td></tr>
|
|
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
|
|
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
|
|
* </table>
|
|
*
|
|
* Yes, negative zero <em>is</em> a possible value. Note that there is
|
|
* <em>always</em> a <code>.</code> and at least one digit printed after
|
|
* it: even if the number is 3, it will be printed as <code>3.0</code>.
|
|
* After the ".", all digits will be printed except trailing zeros. The
|
|
* result is rounded to the shortest decimal number which will parse back
|
|
* to the same float.
|
|
*
|
|
* <p>To create other output formats, use {@link java.text.NumberFormat}.
|
|
*
|
|
* @XXX specify where we are not in accord with the spec.
|
|
*
|
|
* @param f the <code>float</code> to convert
|
|
* @return the <code>String</code> representing the <code>float</code>
|
|
*/
|
|
public static String toString(float f)
|
|
{
|
|
return VMFloat.toString(f);
|
|
}
|
|
|
|
/**
|
|
* Convert a float value to a hexadecimal string. This converts as
|
|
* follows:
|
|
* <ul>
|
|
* <li> A NaN value is converted to the string "NaN".
|
|
* <li> Positive infinity is converted to the string "Infinity".
|
|
* <li> Negative infinity is converted to the string "-Infinity".
|
|
* <li> For all other values, the first character of the result is '-'
|
|
* if the value is negative. This is followed by '0x1.' if the
|
|
* value is normal, and '0x0.' if the value is denormal. This is
|
|
* then followed by a (lower-case) hexadecimal representation of the
|
|
* mantissa, with leading zeros as required for denormal values.
|
|
* The next character is a 'p', and this is followed by a decimal
|
|
* representation of the unbiased exponent.
|
|
* </ul>
|
|
* @param f the float value
|
|
* @return the hexadecimal string representation
|
|
* @since 1.5
|
|
*/
|
|
public static String toHexString(float f)
|
|
{
|
|
if (isNaN(f))
|
|
return "NaN";
|
|
if (isInfinite(f))
|
|
return f < 0 ? "-Infinity" : "Infinity";
|
|
|
|
int bits = floatToIntBits(f);
|
|
CPStringBuilder result = new CPStringBuilder();
|
|
|
|
if (bits < 0)
|
|
result.append('-');
|
|
result.append("0x");
|
|
|
|
final int mantissaBits = 23;
|
|
final int exponentBits = 8;
|
|
int mantMask = (1 << mantissaBits) - 1;
|
|
int mantissa = bits & mantMask;
|
|
int expMask = (1 << exponentBits) - 1;
|
|
int exponent = (bits >>> mantissaBits) & expMask;
|
|
|
|
result.append(exponent == 0 ? '0' : '1');
|
|
result.append('.');
|
|
// For Float only, we have to adjust the mantissa.
|
|
mantissa <<= 1;
|
|
result.append(Integer.toHexString(mantissa));
|
|
if (exponent == 0 && mantissa != 0)
|
|
{
|
|
// Treat denormal specially by inserting '0's to make
|
|
// the length come out right. The constants here are
|
|
// to account for things like the '0x'.
|
|
int offset = 4 + ((bits < 0) ? 1 : 0);
|
|
// The silly +3 is here to keep the code the same between
|
|
// the Float and Double cases. In Float the value is
|
|
// not a multiple of 4.
|
|
int desiredLength = offset + (mantissaBits + 3) / 4;
|
|
while (result.length() < desiredLength)
|
|
result.insert(offset, '0');
|
|
}
|
|
result.append('p');
|
|
if (exponent == 0 && mantissa == 0)
|
|
{
|
|
// Zero, so do nothing special.
|
|
}
|
|
else
|
|
{
|
|
// Apply bias.
|
|
boolean denormal = exponent == 0;
|
|
exponent -= (1 << (exponentBits - 1)) - 1;
|
|
// Handle denormal.
|
|
if (denormal)
|
|
++exponent;
|
|
}
|
|
|
|
result.append(Integer.toString(exponent));
|
|
return result.toString();
|
|
}
|
|
|
|
/**
|
|
* Creates a new <code>Float</code> object using the <code>String</code>.
|
|
*
|
|
* @param s the <code>String</code> to convert
|
|
* @return the new <code>Float</code>
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
|
* <code>float</code>
|
|
* @throws NullPointerException if <code>s</code> is null
|
|
* @see #parseFloat(String)
|
|
*/
|
|
public static Float valueOf(String s)
|
|
{
|
|
return valueOf(parseFloat(s));
|
|
}
|
|
|
|
/**
|
|
* Returns a <code>Float</code> object wrapping the value.
|
|
* In contrast to the <code>Float</code> constructor, this method
|
|
* may cache some values. It is used by boxing conversion.
|
|
*
|
|
* @param val the value to wrap
|
|
* @return the <code>Float</code>
|
|
* @since 1.5
|
|
*/
|
|
public static Float valueOf(float val)
|
|
{
|
|
if ((val == 0.0) && (floatToRawIntBits(val) == 0))
|
|
return ZERO;
|
|
else if (val == 1.0)
|
|
return ONE;
|
|
else
|
|
return new Float(val);
|
|
}
|
|
|
|
/**
|
|
* Parse the specified <code>String</code> as a <code>float</code>. The
|
|
* extended BNF grammar is as follows:<br>
|
|
* <pre>
|
|
* <em>DecodableString</em>:
|
|
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
|
|
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
|
|
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
|
|
* [ <code>f</code> | <code>F</code> | <code>d</code>
|
|
* | <code>D</code>] )
|
|
* <em>FloatingPoint</em>:
|
|
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
|
|
* [ <em>Exponent</em> ] )
|
|
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
|
|
* <em>Exponent</em>:
|
|
* ( ( <code>e</code> | <code>E</code> )
|
|
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
|
|
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
|
|
* </pre>
|
|
*
|
|
* <p>NaN and infinity are special cases, to allow parsing of the output
|
|
* of toString. Otherwise, the result is determined by calculating
|
|
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
|
|
* to the nearest float. Remember that many numbers cannot be precisely
|
|
* represented in floating point. In case of overflow, infinity is used,
|
|
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
|
|
* this does not accept Unicode digits outside the ASCII range.
|
|
*
|
|
* <p>If an unexpected character is found in the <code>String</code>, a
|
|
* <code>NumberFormatException</code> will be thrown. Leading and trailing
|
|
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
|
|
* internal to the actual number are not allowed.
|
|
*
|
|
* <p>To parse numbers according to another format, consider using
|
|
* {@link java.text.NumberFormat}.
|
|
*
|
|
* @XXX specify where/how we are not in accord with the spec.
|
|
*
|
|
* @param str the <code>String</code> to convert
|
|
* @return the <code>float</code> value of <code>s</code>
|
|
* @throws NumberFormatException if <code>str</code> cannot be parsed as a
|
|
* <code>float</code>
|
|
* @throws NullPointerException if <code>str</code> is null
|
|
* @see #MIN_VALUE
|
|
* @see #MAX_VALUE
|
|
* @see #POSITIVE_INFINITY
|
|
* @see #NEGATIVE_INFINITY
|
|
* @since 1.2
|
|
*/
|
|
public static float parseFloat(String str)
|
|
{
|
|
return VMFloat.parseFloat(str);
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the <code>float</code> has the same
|
|
* value as <code>NaN</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @param v the <code>float</code> to compare
|
|
* @return whether the argument is <code>NaN</code>
|
|
*/
|
|
public static boolean isNaN(float v)
|
|
{
|
|
// This works since NaN != NaN is the only reflexive inequality
|
|
// comparison which returns true.
|
|
return v != v;
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the <code>float</code> has a value
|
|
* equal to either <code>NEGATIVE_INFINITY</code> or
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @param v the <code>float</code> to compare
|
|
* @return whether the argument is (-/+) infinity
|
|
*/
|
|
public static boolean isInfinite(float v)
|
|
{
|
|
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the value of this <code>Float</code>
|
|
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @return whether this <code>Float</code> is <code>NaN</code>
|
|
*/
|
|
public boolean isNaN()
|
|
{
|
|
return isNaN(value);
|
|
}
|
|
|
|
/**
|
|
* Return <code>true</code> if the value of this <code>Float</code>
|
|
* is the same as <code>NEGATIVE_INFINITY</code> or
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
|
*
|
|
* @return whether this <code>Float</code> is (-/+) infinity
|
|
*/
|
|
public boolean isInfinite()
|
|
{
|
|
return isInfinite(value);
|
|
}
|
|
|
|
/**
|
|
* Convert the <code>float</code> value of this <code>Float</code>
|
|
* to a <code>String</code>. This method calls
|
|
* <code>Float.toString(float)</code> to do its dirty work.
|
|
*
|
|
* @return the <code>String</code> representation
|
|
* @see #toString(float)
|
|
*/
|
|
public String toString()
|
|
{
|
|
return toString(value);
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Float</code> as a <code>byte</code>.
|
|
*
|
|
* @return the byte value
|
|
* @since 1.1
|
|
*/
|
|
public byte byteValue()
|
|
{
|
|
return (byte) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Float</code> as a <code>short</code>.
|
|
*
|
|
* @return the short value
|
|
* @since 1.1
|
|
*/
|
|
public short shortValue()
|
|
{
|
|
return (short) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Integer</code> as an <code>int</code>.
|
|
*
|
|
* @return the int value
|
|
*/
|
|
public int intValue()
|
|
{
|
|
return (int) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Integer</code> as a <code>long</code>.
|
|
*
|
|
* @return the long value
|
|
*/
|
|
public long longValue()
|
|
{
|
|
return (long) value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Float</code>.
|
|
*
|
|
* @return the float value
|
|
*/
|
|
public float floatValue()
|
|
{
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* Return the value of this <code>Float</code> as a <code>double</code>
|
|
*
|
|
* @return the double value
|
|
*/
|
|
public double doubleValue()
|
|
{
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* Return a hashcode representing this Object. <code>Float</code>'s hash
|
|
* code is calculated by calling <code>floatToIntBits(floatValue())</code>.
|
|
*
|
|
* @return this Object's hash code
|
|
* @see #floatToIntBits(float)
|
|
*/
|
|
public int hashCode()
|
|
{
|
|
return floatToIntBits(value);
|
|
}
|
|
|
|
/**
|
|
* Returns <code>true</code> if <code>obj</code> is an instance of
|
|
* <code>Float</code> and represents the same float value. Unlike comparing
|
|
* two floats with <code>==</code>, this treats two instances of
|
|
* <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
|
|
* <code>-0.0</code> as unequal.
|
|
*
|
|
* <p>Note that <code>f1.equals(f2)</code> is identical to
|
|
* <code>floatToIntBits(f1.floatValue()) ==
|
|
* floatToIntBits(f2.floatValue())</code>.
|
|
*
|
|
* @param obj the object to compare
|
|
* @return whether the objects are semantically equal
|
|
*/
|
|
public boolean equals(Object obj)
|
|
{
|
|
if (obj instanceof Float)
|
|
{
|
|
float f = ((Float) obj).value;
|
|
return (floatToRawIntBits(value) == floatToRawIntBits(f)) ||
|
|
(isNaN(value) && isNaN(f));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Convert the float to the IEEE 754 floating-point "single format" bit
|
|
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
|
|
* (masked by 0x7f800000) represent the exponent, and bits 22-0
|
|
* (masked by 0x007fffff) are the mantissa. This function collapses all
|
|
* versions of NaN to 0x7fc00000. The result of this function can be used
|
|
* as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
|
|
* original <code>float</code> value.
|
|
*
|
|
* @param value the <code>float</code> to convert
|
|
* @return the bits of the <code>float</code>
|
|
* @see #intBitsToFloat(int)
|
|
*/
|
|
public static int floatToIntBits(float value)
|
|
{
|
|
if (isNaN(value))
|
|
return 0x7fc00000;
|
|
else
|
|
return VMFloat.floatToRawIntBits(value);
|
|
}
|
|
|
|
/**
|
|
* Convert the float to the IEEE 754 floating-point "single format" bit
|
|
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
|
|
* (masked by 0x7f800000) represent the exponent, and bits 22-0
|
|
* (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
|
|
* rather than collapsing to a canonical value. The result of this function
|
|
* can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
|
|
* obtain the original <code>float</code> value.
|
|
*
|
|
* @param value the <code>float</code> to convert
|
|
* @return the bits of the <code>float</code>
|
|
* @see #intBitsToFloat(int)
|
|
*/
|
|
public static int floatToRawIntBits(float value)
|
|
{
|
|
return VMFloat.floatToRawIntBits(value);
|
|
}
|
|
|
|
/**
|
|
* Convert the argument in IEEE 754 floating-point "single format" bit
|
|
* layout to the corresponding float. Bit 31 (the most significant) is the
|
|
* sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
|
|
* bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
|
|
* NaN alone, so that you can recover the bit pattern with
|
|
* <code>Float.floatToRawIntBits(float)</code>.
|
|
*
|
|
* @param bits the bits to convert
|
|
* @return the <code>float</code> represented by the bits
|
|
* @see #floatToIntBits(float)
|
|
* @see #floatToRawIntBits(float)
|
|
*/
|
|
public static float intBitsToFloat(int bits)
|
|
{
|
|
return VMFloat.intBitsToFloat(bits);
|
|
}
|
|
|
|
/**
|
|
* Compare two Floats numerically by comparing their <code>float</code>
|
|
* values. The result is positive if the first is greater, negative if the
|
|
* second is greater, and 0 if the two are equal. However, this special
|
|
* cases NaN and signed zero as follows: NaN is considered greater than
|
|
* all other floats, including <code>POSITIVE_INFINITY</code>, and positive
|
|
* zero is considered greater than negative zero.
|
|
*
|
|
* @param f the Float to compare
|
|
* @return the comparison
|
|
* @since 1.2
|
|
*/
|
|
public int compareTo(Float f)
|
|
{
|
|
return compare(value, f.value);
|
|
}
|
|
|
|
/**
|
|
* Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
|
|
* other words this compares two floats, special casing NaN and zero,
|
|
* without the overhead of objects.
|
|
*
|
|
* @param x the first float to compare
|
|
* @param y the second float to compare
|
|
* @return the comparison
|
|
* @since 1.4
|
|
*/
|
|
public static int compare(float x, float y)
|
|
{
|
|
// handle the easy cases:
|
|
if (x < y)
|
|
return -1;
|
|
if (x > y)
|
|
return 1;
|
|
|
|
// handle equality respecting that 0.0 != -0.0 (hence not using x == y):
|
|
int ix = floatToRawIntBits(x);
|
|
int iy = floatToRawIntBits(y);
|
|
if (ix == iy)
|
|
return 0;
|
|
|
|
// handle NaNs:
|
|
if (x != x)
|
|
return (y != y) ? 0 : 1;
|
|
else if (y != y)
|
|
return -1;
|
|
|
|
// handle +/- 0.0
|
|
return (ix < iy) ? -1 : 1;
|
|
}
|
|
}
|