mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 07:31:32 +00:00
2464 lines
64 KiB
C
2464 lines
64 KiB
C
/* Renesas RL78 specific support for 32-bit ELF.
|
||
Copyright (C) 2011-2014 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "bfd_stdint.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/rl78.h"
|
||
#include "libiberty.h"
|
||
|
||
#define valid_16bit_address(v) ((v) <= 0x0ffff || (v) >= 0xf0000)
|
||
|
||
#define RL78REL(n,sz,bit,shift,complain,pcrel) \
|
||
HOWTO (R_RL78_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
|
||
bfd_elf_generic_reloc, "R_RL78_" #n, FALSE, 0, ~0, FALSE)
|
||
|
||
/* Note that the relocations around 0x7f are internal to this file;
|
||
feel free to move them as needed to avoid conflicts with published
|
||
relocation numbers. */
|
||
|
||
static reloc_howto_type rl78_elf_howto_table [] =
|
||
{
|
||
RL78REL (NONE, 3, 0, 0, dont, FALSE),
|
||
RL78REL (DIR32, 2, 32, 0, signed, FALSE),
|
||
RL78REL (DIR24S, 2, 24, 0, signed, FALSE),
|
||
RL78REL (DIR16, 1, 16, 0, dont, FALSE),
|
||
RL78REL (DIR16U, 1, 16, 0, unsigned, FALSE),
|
||
RL78REL (DIR16S, 1, 16, 0, signed, FALSE),
|
||
RL78REL (DIR8, 0, 8, 0, dont, FALSE),
|
||
RL78REL (DIR8U, 0, 8, 0, unsigned, FALSE),
|
||
RL78REL (DIR8S, 0, 8, 0, signed, FALSE),
|
||
RL78REL (DIR24S_PCREL, 2, 24, 0, signed, TRUE),
|
||
RL78REL (DIR16S_PCREL, 1, 16, 0, signed, TRUE),
|
||
RL78REL (DIR8S_PCREL, 0, 8, 0, signed, TRUE),
|
||
RL78REL (DIR16UL, 1, 16, 2, unsigned, FALSE),
|
||
RL78REL (DIR16UW, 1, 16, 1, unsigned, FALSE),
|
||
RL78REL (DIR8UL, 0, 8, 2, unsigned, FALSE),
|
||
RL78REL (DIR8UW, 0, 8, 1, unsigned, FALSE),
|
||
RL78REL (DIR32_REV, 1, 16, 0, dont, FALSE),
|
||
RL78REL (DIR16_REV, 1, 16, 0, dont, FALSE),
|
||
RL78REL (DIR3U_PCREL, 0, 3, 0, dont, TRUE),
|
||
|
||
EMPTY_HOWTO (0x13),
|
||
EMPTY_HOWTO (0x14),
|
||
EMPTY_HOWTO (0x15),
|
||
EMPTY_HOWTO (0x16),
|
||
EMPTY_HOWTO (0x17),
|
||
EMPTY_HOWTO (0x18),
|
||
EMPTY_HOWTO (0x19),
|
||
EMPTY_HOWTO (0x1a),
|
||
EMPTY_HOWTO (0x1b),
|
||
EMPTY_HOWTO (0x1c),
|
||
EMPTY_HOWTO (0x1d),
|
||
EMPTY_HOWTO (0x1e),
|
||
EMPTY_HOWTO (0x1f),
|
||
|
||
EMPTY_HOWTO (0x20),
|
||
EMPTY_HOWTO (0x21),
|
||
EMPTY_HOWTO (0x22),
|
||
EMPTY_HOWTO (0x23),
|
||
EMPTY_HOWTO (0x24),
|
||
EMPTY_HOWTO (0x25),
|
||
EMPTY_HOWTO (0x26),
|
||
EMPTY_HOWTO (0x27),
|
||
EMPTY_HOWTO (0x28),
|
||
EMPTY_HOWTO (0x29),
|
||
EMPTY_HOWTO (0x2a),
|
||
EMPTY_HOWTO (0x2b),
|
||
EMPTY_HOWTO (0x2c),
|
||
RL78REL (RH_RELAX, 0, 0, 0, dont, FALSE),
|
||
|
||
EMPTY_HOWTO (0x2e),
|
||
EMPTY_HOWTO (0x2f),
|
||
EMPTY_HOWTO (0x30),
|
||
EMPTY_HOWTO (0x31),
|
||
EMPTY_HOWTO (0x32),
|
||
EMPTY_HOWTO (0x33),
|
||
EMPTY_HOWTO (0x34),
|
||
EMPTY_HOWTO (0x35),
|
||
EMPTY_HOWTO (0x36),
|
||
EMPTY_HOWTO (0x37),
|
||
EMPTY_HOWTO (0x38),
|
||
EMPTY_HOWTO (0x39),
|
||
EMPTY_HOWTO (0x3a),
|
||
EMPTY_HOWTO (0x3b),
|
||
EMPTY_HOWTO (0x3c),
|
||
EMPTY_HOWTO (0x3d),
|
||
EMPTY_HOWTO (0x3e),
|
||
EMPTY_HOWTO (0x3f),
|
||
EMPTY_HOWTO (0x40),
|
||
|
||
RL78REL (ABS32, 2, 32, 0, dont, FALSE),
|
||
RL78REL (ABS24S, 2, 24, 0, signed, FALSE),
|
||
RL78REL (ABS16, 1, 16, 0, dont, FALSE),
|
||
RL78REL (ABS16U, 1, 16, 0, unsigned, FALSE),
|
||
RL78REL (ABS16S, 1, 16, 0, signed, FALSE),
|
||
RL78REL (ABS8, 0, 8, 0, dont, FALSE),
|
||
RL78REL (ABS8U, 0, 8, 0, unsigned, FALSE),
|
||
RL78REL (ABS8S, 0, 8, 0, signed, FALSE),
|
||
RL78REL (ABS24S_PCREL, 2, 24, 0, signed, TRUE),
|
||
RL78REL (ABS16S_PCREL, 1, 16, 0, signed, TRUE),
|
||
RL78REL (ABS8S_PCREL, 0, 8, 0, signed, TRUE),
|
||
RL78REL (ABS16UL, 1, 16, 0, unsigned, FALSE),
|
||
RL78REL (ABS16UW, 1, 16, 0, unsigned, FALSE),
|
||
RL78REL (ABS8UL, 0, 8, 0, unsigned, FALSE),
|
||
RL78REL (ABS8UW, 0, 8, 0, unsigned, FALSE),
|
||
RL78REL (ABS32_REV, 2, 32, 0, dont, FALSE),
|
||
RL78REL (ABS16_REV, 1, 16, 0, dont, FALSE),
|
||
|
||
#define STACK_REL_P(x) ((x) <= R_RL78_ABS16_REV && (x) >= R_RL78_ABS32)
|
||
|
||
EMPTY_HOWTO (0x52),
|
||
EMPTY_HOWTO (0x53),
|
||
EMPTY_HOWTO (0x54),
|
||
EMPTY_HOWTO (0x55),
|
||
EMPTY_HOWTO (0x56),
|
||
EMPTY_HOWTO (0x57),
|
||
EMPTY_HOWTO (0x58),
|
||
EMPTY_HOWTO (0x59),
|
||
EMPTY_HOWTO (0x5a),
|
||
EMPTY_HOWTO (0x5b),
|
||
EMPTY_HOWTO (0x5c),
|
||
EMPTY_HOWTO (0x5d),
|
||
EMPTY_HOWTO (0x5e),
|
||
EMPTY_HOWTO (0x5f),
|
||
EMPTY_HOWTO (0x60),
|
||
EMPTY_HOWTO (0x61),
|
||
EMPTY_HOWTO (0x62),
|
||
EMPTY_HOWTO (0x63),
|
||
EMPTY_HOWTO (0x64),
|
||
EMPTY_HOWTO (0x65),
|
||
EMPTY_HOWTO (0x66),
|
||
EMPTY_HOWTO (0x67),
|
||
EMPTY_HOWTO (0x68),
|
||
EMPTY_HOWTO (0x69),
|
||
EMPTY_HOWTO (0x6a),
|
||
EMPTY_HOWTO (0x6b),
|
||
EMPTY_HOWTO (0x6c),
|
||
EMPTY_HOWTO (0x6d),
|
||
EMPTY_HOWTO (0x6e),
|
||
EMPTY_HOWTO (0x6f),
|
||
EMPTY_HOWTO (0x70),
|
||
EMPTY_HOWTO (0x71),
|
||
EMPTY_HOWTO (0x72),
|
||
EMPTY_HOWTO (0x73),
|
||
EMPTY_HOWTO (0x74),
|
||
EMPTY_HOWTO (0x75),
|
||
EMPTY_HOWTO (0x76),
|
||
EMPTY_HOWTO (0x77),
|
||
|
||
EMPTY_HOWTO (0x78),
|
||
EMPTY_HOWTO (0x79),
|
||
EMPTY_HOWTO (0x7a),
|
||
EMPTY_HOWTO (0x7b),
|
||
EMPTY_HOWTO (0x7c),
|
||
EMPTY_HOWTO (0x7d),
|
||
EMPTY_HOWTO (0x7e),
|
||
EMPTY_HOWTO (0x7f),
|
||
|
||
RL78REL (SYM, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPneg, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPadd, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPsub, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPmul, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPdiv, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPshla, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPshra, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPsctsize, 2, 32, 0, dont, FALSE),
|
||
EMPTY_HOWTO (0x89),
|
||
EMPTY_HOWTO (0x8a),
|
||
EMPTY_HOWTO (0x8b),
|
||
EMPTY_HOWTO (0x8c),
|
||
RL78REL (OPscttop, 2, 32, 0, dont, FALSE),
|
||
EMPTY_HOWTO (0x8e),
|
||
EMPTY_HOWTO (0x8f),
|
||
RL78REL (OPand, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPor, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPxor, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPnot, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPmod, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPromtop, 2, 32, 0, dont, FALSE),
|
||
RL78REL (OPramtop, 2, 32, 0, dont, FALSE)
|
||
};
|
||
|
||
/* Map BFD reloc types to RL78 ELF reloc types. */
|
||
|
||
struct rl78_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
unsigned int rl78_reloc_val;
|
||
};
|
||
|
||
static const struct rl78_reloc_map rl78_reloc_map [] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_RL78_NONE },
|
||
{ BFD_RELOC_8, R_RL78_DIR8S },
|
||
{ BFD_RELOC_16, R_RL78_DIR16S },
|
||
{ BFD_RELOC_24, R_RL78_DIR24S },
|
||
{ BFD_RELOC_32, R_RL78_DIR32 },
|
||
{ BFD_RELOC_RL78_16_OP, R_RL78_DIR16 },
|
||
{ BFD_RELOC_RL78_DIR3U_PCREL, R_RL78_DIR3U_PCREL },
|
||
{ BFD_RELOC_8_PCREL, R_RL78_DIR8S_PCREL },
|
||
{ BFD_RELOC_16_PCREL, R_RL78_DIR16S_PCREL },
|
||
{ BFD_RELOC_24_PCREL, R_RL78_DIR24S_PCREL },
|
||
{ BFD_RELOC_RL78_8U, R_RL78_DIR8U },
|
||
{ BFD_RELOC_RL78_16U, R_RL78_DIR16U },
|
||
{ BFD_RELOC_RL78_SYM, R_RL78_SYM },
|
||
{ BFD_RELOC_RL78_OP_SUBTRACT, R_RL78_OPsub },
|
||
{ BFD_RELOC_RL78_OP_NEG, R_RL78_OPneg },
|
||
{ BFD_RELOC_RL78_OP_AND, R_RL78_OPand },
|
||
{ BFD_RELOC_RL78_OP_SHRA, R_RL78_OPshra },
|
||
{ BFD_RELOC_RL78_ABS8, R_RL78_ABS8 },
|
||
{ BFD_RELOC_RL78_ABS16, R_RL78_ABS16 },
|
||
{ BFD_RELOC_RL78_ABS16_REV, R_RL78_ABS16_REV },
|
||
{ BFD_RELOC_RL78_ABS32, R_RL78_ABS32 },
|
||
{ BFD_RELOC_RL78_ABS32_REV, R_RL78_ABS32_REV },
|
||
{ BFD_RELOC_RL78_ABS16UL, R_RL78_ABS16UL },
|
||
{ BFD_RELOC_RL78_ABS16UW, R_RL78_ABS16UW },
|
||
{ BFD_RELOC_RL78_ABS16U, R_RL78_ABS16U },
|
||
{ BFD_RELOC_RL78_RELAX, R_RL78_RH_RELAX }
|
||
};
|
||
|
||
static reloc_howto_type *
|
||
rl78_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
if (code == BFD_RELOC_RL78_32_OP)
|
||
return rl78_elf_howto_table + R_RL78_DIR32;
|
||
|
||
for (i = ARRAY_SIZE (rl78_reloc_map); i--;)
|
||
if (rl78_reloc_map [i].bfd_reloc_val == code)
|
||
return rl78_elf_howto_table + rl78_reloc_map[i].rl78_reloc_val;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
rl78_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (rl78_elf_howto_table); i++)
|
||
if (rl78_elf_howto_table[i].name != NULL
|
||
&& strcasecmp (rl78_elf_howto_table[i].name, r_name) == 0)
|
||
return rl78_elf_howto_table + i;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Set the howto pointer for an RL78 ELF reloc. */
|
||
|
||
static void
|
||
rl78_info_to_howto_rela (bfd * abfd ATTRIBUTE_UNUSED,
|
||
arelent * cache_ptr,
|
||
Elf_Internal_Rela * dst)
|
||
{
|
||
unsigned int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (dst->r_info);
|
||
if (r_type >= (unsigned int) R_RL78_max)
|
||
{
|
||
_bfd_error_handler (_("%B: invalid RL78 reloc number: %d"), abfd, r_type);
|
||
r_type = 0;
|
||
}
|
||
cache_ptr->howto = rl78_elf_howto_table + r_type;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_symbol_value (const char * name,
|
||
bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
int offset)
|
||
{
|
||
bfd_vma value = 0;
|
||
struct bfd_link_hash_entry * h;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
|
||
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_defined
|
||
&& h->type != bfd_link_hash_defweak))
|
||
* status = info->callbacks->undefined_symbol
|
||
(info, name, input_bfd, input_section, offset, TRUE);
|
||
else
|
||
value = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
|
||
return value;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_romstart (bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * abfd,
|
||
asection * sec,
|
||
int offset)
|
||
{
|
||
static bfd_boolean cached = FALSE;
|
||
static bfd_vma cached_value = 0;
|
||
|
||
if (!cached)
|
||
{
|
||
cached_value = get_symbol_value ("_start", status, info, abfd, sec, offset);
|
||
cached = TRUE;
|
||
}
|
||
return cached_value;
|
||
}
|
||
|
||
static bfd_vma
|
||
get_ramstart (bfd_reloc_status_type * status,
|
||
struct bfd_link_info * info,
|
||
bfd * abfd,
|
||
asection * sec,
|
||
int offset)
|
||
{
|
||
static bfd_boolean cached = FALSE;
|
||
static bfd_vma cached_value = 0;
|
||
|
||
if (!cached)
|
||
{
|
||
cached_value = get_symbol_value ("__datastart", status, info, abfd, sec, offset);
|
||
cached = TRUE;
|
||
}
|
||
return cached_value;
|
||
}
|
||
|
||
#define NUM_STACK_ENTRIES 16
|
||
static int32_t rl78_stack [ NUM_STACK_ENTRIES ];
|
||
static unsigned int rl78_stack_top;
|
||
|
||
#define RL78_STACK_PUSH(val) \
|
||
do \
|
||
{ \
|
||
if (rl78_stack_top < NUM_STACK_ENTRIES) \
|
||
rl78_stack [rl78_stack_top ++] = (val); \
|
||
else \
|
||
r = bfd_reloc_dangerous; \
|
||
} \
|
||
while (0)
|
||
|
||
#define RL78_STACK_POP(dest) \
|
||
do \
|
||
{ \
|
||
if (rl78_stack_top > 0) \
|
||
(dest) = rl78_stack [-- rl78_stack_top]; \
|
||
else \
|
||
(dest) = 0, r = bfd_reloc_dangerous; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Relocate an RL78 ELF section.
|
||
There is some attempt to make this function usable for many architectures,
|
||
both USE_REL and USE_RELA ['twould be nice if such a critter existed],
|
||
if only to serve as a learning tool.
|
||
|
||
The RELOCATE_SECTION function is called by the new ELF backend linker
|
||
to handle the relocations for a section.
|
||
|
||
The relocs are always passed as Rela structures; if the section
|
||
actually uses Rel structures, the r_addend field will always be
|
||
zero.
|
||
|
||
This function is responsible for adjusting the section contents as
|
||
necessary, and (if using Rela relocs and generating a relocatable
|
||
output file) adjusting the reloc addend as necessary.
|
||
|
||
This function does not have to worry about setting the reloc
|
||
address or the reloc symbol index.
|
||
|
||
LOCAL_SYMS is a pointer to the swapped in local symbols.
|
||
|
||
LOCAL_SECTIONS is an array giving the section in the input file
|
||
corresponding to the st_shndx field of each local symbol.
|
||
|
||
The global hash table entry for the global symbols can be found
|
||
via elf_sym_hashes (input_bfd).
|
||
|
||
When generating relocatable output, this function must handle
|
||
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
|
||
going to be the section symbol corresponding to the output
|
||
section, which means that the addend must be adjusted
|
||
accordingly. */
|
||
|
||
static bfd_boolean
|
||
rl78_elf_relocate_section
|
||
(bfd * output_bfd,
|
||
struct bfd_link_info * info,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
bfd_byte * contents,
|
||
Elf_Internal_Rela * relocs,
|
||
Elf_Internal_Sym * local_syms,
|
||
asection ** local_sections)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
Elf_Internal_Rela * rel;
|
||
Elf_Internal_Rela * relend;
|
||
bfd *dynobj;
|
||
asection *splt;
|
||
|
||
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
relend = relocs + input_section->reloc_count;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
splt = NULL;
|
||
if (dynobj != NULL)
|
||
splt = bfd_get_linker_section (dynobj, ".plt");
|
||
|
||
for (rel = relocs; rel < relend; rel ++)
|
||
{
|
||
reloc_howto_type * howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym * sym;
|
||
asection * sec;
|
||
struct elf_link_hash_entry * h;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
const char * name = NULL;
|
||
bfd_boolean unresolved_reloc = TRUE;
|
||
int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
howto = rl78_elf_howto_table + ELF32_R_TYPE (rel->r_info);
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
relocation = 0;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections [r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel);
|
||
|
||
name = bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
||
name = (sym->st_name == 0) ? bfd_section_name (input_bfd, sec) : name;
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean warned ATTRIBUTE_UNUSED;
|
||
bfd_boolean ignored ATTRIBUTE_UNUSED;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes, h,
|
||
sec, relocation, unresolved_reloc,
|
||
warned, ignored);
|
||
|
||
name = h->root.root.string;
|
||
}
|
||
|
||
if (sec != NULL && discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, 1, relend, howto, 0, contents);
|
||
|
||
if (info->relocatable)
|
||
{
|
||
/* This is a relocatable link. We don't have to change
|
||
anything, unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
rel->r_addend += sec->output_offset;
|
||
continue;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_RL78_DIR16S:
|
||
{
|
||
bfd_vma *plt_offset;
|
||
|
||
if (h != NULL)
|
||
plt_offset = &h->plt.offset;
|
||
else
|
||
plt_offset = elf_local_got_offsets (input_bfd) + r_symndx;
|
||
|
||
if (! valid_16bit_address (relocation))
|
||
{
|
||
/* If this is the first time we've processed this symbol,
|
||
fill in the plt entry with the correct symbol address. */
|
||
if ((*plt_offset & 1) == 0)
|
||
{
|
||
unsigned int x;
|
||
|
||
x = 0x000000ec; /* br !!abs24 */
|
||
x |= (relocation << 8) & 0xffffff00;
|
||
bfd_put_32 (input_bfd, x, splt->contents + *plt_offset);
|
||
*plt_offset |= 1;
|
||
}
|
||
|
||
relocation = (splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ (*plt_offset & -2));
|
||
if (name)
|
||
{
|
||
char *newname = bfd_malloc (strlen(name)+5);
|
||
strcpy (newname, name);
|
||
strcat(newname, ".plt");
|
||
_bfd_generic_link_add_one_symbol (info,
|
||
input_bfd,
|
||
newname,
|
||
BSF_FUNCTION | BSF_WEAK,
|
||
splt,
|
||
(*plt_offset & -2),
|
||
0,
|
||
1,
|
||
0,
|
||
0);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (h != NULL && h->root.type == bfd_link_hash_undefweak)
|
||
/* If the symbol is undefined and weak
|
||
then the relocation resolves to zero. */
|
||
relocation = 0;
|
||
else
|
||
{
|
||
if (howto->pc_relative)
|
||
{
|
||
relocation -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ rel->r_offset);
|
||
relocation -= bfd_get_reloc_size (howto);
|
||
}
|
||
|
||
relocation += rel->r_addend;
|
||
}
|
||
|
||
r = bfd_reloc_ok;
|
||
|
||
#define RANGE(a,b) if (a > (long) relocation || (long) relocation > b) r = bfd_reloc_overflow
|
||
#define ALIGN(m) if (relocation & m) r = bfd_reloc_other;
|
||
#define OP(i) (contents[rel->r_offset + (i)])
|
||
|
||
/* Opcode relocs are always big endian. Data relocs are bi-endian. */
|
||
switch (r_type)
|
||
{
|
||
case R_RL78_NONE:
|
||
break;
|
||
|
||
case R_RL78_RH_RELAX:
|
||
break;
|
||
|
||
case R_RL78_DIR8S_PCREL:
|
||
RANGE (-128, 127);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_DIR8S:
|
||
RANGE (-128, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_DIR8U:
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_DIR16S_PCREL:
|
||
RANGE (-32768, 32767);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_DIR16S:
|
||
if ((relocation & 0xf0000) == 0xf0000)
|
||
relocation &= 0xffff;
|
||
RANGE (-32768, 65535);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_DIR16U:
|
||
RANGE (0, 65536);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_DIR16:
|
||
RANGE (-32768, 65536);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_DIR16_REV:
|
||
RANGE (-32768, 65536);
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_DIR3U_PCREL:
|
||
RANGE (3, 10);
|
||
OP (0) &= 0xf8;
|
||
OP (0) |= relocation & 0x07;
|
||
break;
|
||
|
||
case R_RL78_DIR24S_PCREL:
|
||
RANGE (-0x800000, 0x7fffff);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
break;
|
||
|
||
case R_RL78_DIR24S:
|
||
RANGE (-0x800000, 0x7fffff);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
break;
|
||
|
||
case R_RL78_DIR32:
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
break;
|
||
|
||
case R_RL78_DIR32_REV:
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
break;
|
||
|
||
case R_RL78_RH_SFR:
|
||
RANGE (0xfff00, 0xfffff);
|
||
OP (0) = relocation & 0xff;
|
||
break;
|
||
|
||
case R_RL78_RH_SADDR:
|
||
RANGE (0xffe20, 0xfff1f);
|
||
OP (0) = relocation & 0xff;
|
||
break;
|
||
|
||
/* Complex reloc handling: */
|
||
|
||
case R_RL78_ABS32:
|
||
RL78_STACK_POP (relocation);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
OP (3) = relocation >> 24;
|
||
break;
|
||
|
||
case R_RL78_ABS32_REV:
|
||
RL78_STACK_POP (relocation);
|
||
OP (3) = relocation;
|
||
OP (2) = relocation >> 8;
|
||
OP (1) = relocation >> 16;
|
||
OP (0) = relocation >> 24;
|
||
break;
|
||
|
||
case R_RL78_ABS24S_PCREL:
|
||
case R_RL78_ABS24S:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (-0x800000, 0x7fffff);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
OP (2) = relocation >> 16;
|
||
break;
|
||
|
||
case R_RL78_ABS16:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (-32768, 65535);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_ABS16_REV:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (-32768, 65535);
|
||
OP (1) = relocation;
|
||
OP (0) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_ABS16S_PCREL:
|
||
case R_RL78_ABS16S:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (-32768, 32767);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_ABS16U:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (0, 65536);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_ABS16UL:
|
||
RL78_STACK_POP (relocation);
|
||
relocation >>= 2;
|
||
RANGE (0, 65536);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_ABS16UW:
|
||
RL78_STACK_POP (relocation);
|
||
relocation >>= 1;
|
||
RANGE (0, 65536);
|
||
OP (0) = relocation;
|
||
OP (1) = relocation >> 8;
|
||
break;
|
||
|
||
case R_RL78_ABS8:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (-128, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_ABS8U:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_ABS8UL:
|
||
RL78_STACK_POP (relocation);
|
||
relocation >>= 2;
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_ABS8UW:
|
||
RL78_STACK_POP (relocation);
|
||
relocation >>= 1;
|
||
RANGE (0, 255);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_ABS8S_PCREL:
|
||
case R_RL78_ABS8S:
|
||
RL78_STACK_POP (relocation);
|
||
RANGE (-128, 127);
|
||
OP (0) = relocation;
|
||
break;
|
||
|
||
case R_RL78_SYM:
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
RL78_STACK_PUSH (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value
|
||
+ rel->r_addend);
|
||
else
|
||
{
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
RL78_STACK_PUSH (h->root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ rel->r_addend);
|
||
else if (h->root.type == bfd_link_hash_undefweak)
|
||
RL78_STACK_PUSH (0);
|
||
else
|
||
_bfd_error_handler (_("Warning: RL78_SYM reloc with an unknown symbol"));
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPneg:
|
||
{
|
||
int32_t tmp;
|
||
|
||
RL78_STACK_POP (tmp);
|
||
tmp = - tmp;
|
||
RL78_STACK_PUSH (tmp);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPadd:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 += tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPsub:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
/* For the expression "A - B", the assembler pushes A,
|
||
then B, then OPSUB. So the first op we pop is B, not
|
||
A. */
|
||
RL78_STACK_POP (tmp2); /* B */
|
||
RL78_STACK_POP (tmp1); /* A */
|
||
tmp1 -= tmp2; /* A - B */
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPmul:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 *= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPdiv:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 /= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPshla:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 <<= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPshra:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 >>= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPsctsize:
|
||
RL78_STACK_PUSH (input_section->size);
|
||
break;
|
||
|
||
case R_RL78_OPscttop:
|
||
RL78_STACK_PUSH (input_section->output_section->vma);
|
||
break;
|
||
|
||
case R_RL78_OPand:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 &= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPor:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 |= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPxor:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 ^= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPnot:
|
||
{
|
||
int32_t tmp;
|
||
|
||
RL78_STACK_POP (tmp);
|
||
tmp = ~ tmp;
|
||
RL78_STACK_PUSH (tmp);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPmod:
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
RL78_STACK_POP (tmp2);
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 %= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
}
|
||
break;
|
||
|
||
case R_RL78_OPromtop:
|
||
RL78_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
case R_RL78_OPramtop:
|
||
RL78_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
default:
|
||
r = bfd_reloc_notsupported;
|
||
break;
|
||
}
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char * msg = NULL;
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
/* Catch the case of a missing function declaration
|
||
and emit a more helpful error message. */
|
||
if (r_type == R_RL78_DIR24S_PCREL)
|
||
msg = _("%B(%A): error: call to undefined function '%s'");
|
||
else
|
||
r = info->callbacks->reloc_overflow
|
||
(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset);
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
r = info->callbacks->undefined_symbol
|
||
(info, name, input_bfd, input_section, rel->r_offset,
|
||
TRUE);
|
||
break;
|
||
|
||
case bfd_reloc_other:
|
||
msg = _("%B(%A): warning: unaligned access to symbol '%s' in the small data area");
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _("%B(%A): internal error: out of range error");
|
||
break;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("%B(%A): internal error: unsupported relocation error");
|
||
break;
|
||
|
||
case bfd_reloc_dangerous:
|
||
msg = _("%B(%A): internal error: dangerous relocation");
|
||
break;
|
||
|
||
default:
|
||
msg = _("%B(%A): internal error: unknown error");
|
||
break;
|
||
}
|
||
|
||
if (msg)
|
||
_bfd_error_handler (msg, input_bfd, input_section, name);
|
||
|
||
if (! r)
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Function to set the ELF flag bits. */
|
||
|
||
static bfd_boolean
|
||
rl78_elf_set_private_flags (bfd * abfd, flagword flags)
|
||
{
|
||
elf_elfheader (abfd)->e_flags = flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean no_warn_mismatch = FALSE;
|
||
|
||
void bfd_elf32_rl78_set_target_flags (bfd_boolean);
|
||
|
||
void
|
||
bfd_elf32_rl78_set_target_flags (bfd_boolean user_no_warn_mismatch)
|
||
{
|
||
no_warn_mismatch = user_no_warn_mismatch;
|
||
}
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
static bfd_boolean
|
||
rl78_elf_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
|
||
{
|
||
flagword new_flags;
|
||
flagword old_flags;
|
||
bfd_boolean error = FALSE;
|
||
|
||
new_flags = elf_elfheader (ibfd)->e_flags;
|
||
old_flags = elf_elfheader (obfd)->e_flags;
|
||
|
||
if (!elf_flags_init (obfd))
|
||
{
|
||
/* First call, no flags set. */
|
||
elf_flags_init (obfd) = TRUE;
|
||
elf_elfheader (obfd)->e_flags = new_flags;
|
||
}
|
||
else if (old_flags != new_flags)
|
||
{
|
||
flagword changed_flags = old_flags ^ new_flags;
|
||
|
||
if (changed_flags & E_FLAG_RL78_G10)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("RL78/G10 ABI conflict: cannot link G10 and non-G10 objects together"));
|
||
|
||
if (old_flags & E_FLAG_RL78_G10)
|
||
(*_bfd_error_handler) (_("- %s is G10, %s is not"),
|
||
bfd_get_filename (obfd), bfd_get_filename (ibfd));
|
||
else
|
||
(*_bfd_error_handler) (_("- %s is G10, %s is not"),
|
||
bfd_get_filename (ibfd), bfd_get_filename (obfd));
|
||
}
|
||
|
||
if (changed_flags & E_FLAG_RL78_64BIT_DOUBLES)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("RL78 merge conflict: cannot link 32-bit and 64-bit objects together"));
|
||
|
||
if (old_flags & E_FLAG_RL78_64BIT_DOUBLES)
|
||
(*_bfd_error_handler) (_("- %s is 64-bit, %s is not"),
|
||
bfd_get_filename (obfd), bfd_get_filename (ibfd));
|
||
else
|
||
(*_bfd_error_handler) (_("- %s is 64-bit, %s is not"),
|
||
bfd_get_filename (ibfd), bfd_get_filename (obfd));
|
||
}
|
||
}
|
||
|
||
return !error;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rl78_elf_print_private_bfd_data (bfd * abfd, void * ptr)
|
||
{
|
||
FILE * file = (FILE *) ptr;
|
||
flagword flags;
|
||
|
||
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
||
|
||
/* Print normal ELF private data. */
|
||
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
||
|
||
flags = elf_elfheader (abfd)->e_flags;
|
||
fprintf (file, _("private flags = 0x%lx:"), (long) flags);
|
||
|
||
if (flags & E_FLAG_RL78_G10)
|
||
fprintf (file, _(" [G10]"));
|
||
|
||
if (flags & E_FLAG_RL78_64BIT_DOUBLES)
|
||
fprintf (file, _(" [64-bit doubles]"));
|
||
|
||
fputc ('\n', file);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the MACH for an e_flags value. */
|
||
|
||
static int
|
||
elf32_rl78_machine (bfd * abfd)
|
||
{
|
||
if ((elf_elfheader (abfd)->e_flags & EF_RL78_CPU_MASK) == EF_RL78_CPU_RL78)
|
||
return bfd_mach_rl78;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rl78_elf_object_p (bfd * abfd)
|
||
{
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_rl78,
|
||
elf32_rl78_machine (abfd));
|
||
return TRUE;
|
||
}
|
||
|
||
/* support PLT for 16-bit references to 24-bit functions. */
|
||
|
||
/* We support 16-bit pointers to code above 64k by generating a thunk
|
||
below 64k containing a JMP instruction to the final address. */
|
||
|
||
static bfd_boolean
|
||
rl78_elf_check_relocs
|
||
(bfd * abfd,
|
||
struct bfd_link_info * info,
|
||
asection * sec,
|
||
const Elf_Internal_Rela * relocs)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
const Elf_Internal_Rela * rel;
|
||
const Elf_Internal_Rela * rel_end;
|
||
bfd_vma *local_plt_offsets;
|
||
asection *splt;
|
||
bfd *dynobj;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
local_plt_offsets = elf_local_got_offsets (abfd);
|
||
splt = NULL;
|
||
dynobj = elf_hash_table(info)->dynobj;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
unsigned long r_symndx;
|
||
bfd_vma *offset;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
/* PR15323, ref flags aren't set for references in the same
|
||
object. */
|
||
h->root.non_ir_ref = 1;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
/* This relocation describes a 16-bit pointer to a function.
|
||
We may need to allocate a thunk in low memory; reserve memory
|
||
for it now. */
|
||
case R_RL78_DIR16S:
|
||
if (dynobj == NULL)
|
||
elf_hash_table (info)->dynobj = dynobj = abfd;
|
||
if (splt == NULL)
|
||
{
|
||
splt = bfd_get_linker_section (dynobj, ".plt");
|
||
if (splt == NULL)
|
||
{
|
||
flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY | SEC_LINKER_CREATED
|
||
| SEC_READONLY | SEC_CODE);
|
||
splt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
|
||
flags);
|
||
if (splt == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, splt, 1))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (h != NULL)
|
||
offset = &h->plt.offset;
|
||
else
|
||
{
|
||
if (local_plt_offsets == NULL)
|
||
{
|
||
size_t size;
|
||
unsigned int i;
|
||
|
||
size = symtab_hdr->sh_info * sizeof (bfd_vma);
|
||
local_plt_offsets = (bfd_vma *) bfd_alloc (abfd, size);
|
||
if (local_plt_offsets == NULL)
|
||
return FALSE;
|
||
elf_local_got_offsets (abfd) = local_plt_offsets;
|
||
|
||
for (i = 0; i < symtab_hdr->sh_info; i++)
|
||
local_plt_offsets[i] = (bfd_vma) -1;
|
||
}
|
||
offset = &local_plt_offsets[r_symndx];
|
||
}
|
||
|
||
if (*offset == (bfd_vma) -1)
|
||
{
|
||
*offset = splt->size;
|
||
splt->size += 4;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This must exist if dynobj is ever set. */
|
||
|
||
static bfd_boolean
|
||
rl78_elf_finish_dynamic_sections (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
bfd *dynobj;
|
||
asection *splt;
|
||
|
||
if (!elf_hash_table (info)->dynamic_sections_created)
|
||
return TRUE;
|
||
|
||
/* As an extra sanity check, verify that all plt entries have been
|
||
filled in. However, relaxing might have changed the relocs so
|
||
that some plt entries don't get filled in, so we have to skip
|
||
this check if we're relaxing. Unfortunately, check_relocs is
|
||
called before relaxation. */
|
||
|
||
if (info->relax_trip > 0)
|
||
return TRUE;
|
||
|
||
if ((dynobj = elf_hash_table (info)->dynobj) != NULL
|
||
&& (splt = bfd_get_linker_section (dynobj, ".plt")) != NULL)
|
||
{
|
||
bfd_byte *contents = splt->contents;
|
||
unsigned int i, size = splt->size;
|
||
|
||
for (i = 0; i < size; i += 4)
|
||
{
|
||
unsigned int x = bfd_get_32 (dynobj, contents + i);
|
||
BFD_ASSERT (x != 0);
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rl78_elf_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
bfd *dynobj;
|
||
asection *splt;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
if (dynobj == NULL)
|
||
return TRUE;
|
||
|
||
splt = bfd_get_linker_section (dynobj, ".plt");
|
||
BFD_ASSERT (splt != NULL);
|
||
|
||
splt->contents = (bfd_byte *) bfd_zalloc (dynobj, splt->size);
|
||
if (splt->contents == NULL)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
|
||
/* Handle relaxing. */
|
||
|
||
/* A subroutine of rl78_elf_relax_section. If the global symbol H
|
||
is within the low 64k, remove any entry for it in the plt. */
|
||
|
||
struct relax_plt_data
|
||
{
|
||
asection *splt;
|
||
bfd_boolean *again;
|
||
};
|
||
|
||
static bfd_boolean
|
||
rl78_relax_plt_check (struct elf_link_hash_entry *h, void * xdata)
|
||
{
|
||
struct relax_plt_data *data = (struct relax_plt_data *) xdata;
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
bfd_vma address;
|
||
|
||
if (h->root.type == bfd_link_hash_undefined
|
||
|| h->root.type == bfd_link_hash_undefweak)
|
||
address = 0;
|
||
else
|
||
address = (h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset
|
||
+ h->root.u.def.value);
|
||
|
||
if (valid_16bit_address (address))
|
||
{
|
||
h->plt.offset = -1;
|
||
data->splt->size -= 4;
|
||
*data->again = TRUE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* A subroutine of rl78_elf_relax_section. If the global symbol H
|
||
previously had a plt entry, give it a new entry offset. */
|
||
|
||
static bfd_boolean
|
||
rl78_relax_plt_realloc (struct elf_link_hash_entry *h, void * xdata)
|
||
{
|
||
bfd_vma *entry = (bfd_vma *) xdata;
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
h->plt.offset = *entry;
|
||
*entry += 4;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
rl78_elf_relax_plt_section (bfd *dynobj,
|
||
asection *splt,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean *again)
|
||
{
|
||
struct relax_plt_data relax_plt_data;
|
||
bfd *ibfd;
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
/* We only relax the .plt section at the moment. */
|
||
if (dynobj != elf_hash_table (info)->dynobj
|
||
|| strcmp (splt->name, ".plt") != 0)
|
||
return TRUE;
|
||
|
||
/* Quick check for an empty plt. */
|
||
if (splt->size == 0)
|
||
return TRUE;
|
||
|
||
/* Map across all global symbols; see which ones happen to
|
||
fall in the low 64k. */
|
||
relax_plt_data.splt = splt;
|
||
relax_plt_data.again = again;
|
||
elf_link_hash_traverse (elf_hash_table (info), rl78_relax_plt_check,
|
||
&relax_plt_data);
|
||
|
||
/* Likewise for local symbols, though that's somewhat less convenient
|
||
as we have to walk the list of input bfds and swap in symbol data. */
|
||
for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next)
|
||
{
|
||
bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd);
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
unsigned int idx;
|
||
|
||
if (! local_plt_offsets)
|
||
continue;
|
||
|
||
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
for (idx = 0; idx < symtab_hdr->sh_info; ++idx)
|
||
{
|
||
Elf_Internal_Sym *isym;
|
||
asection *tsec;
|
||
bfd_vma address;
|
||
|
||
if (local_plt_offsets[idx] == (bfd_vma) -1)
|
||
continue;
|
||
|
||
isym = &isymbuf[idx];
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
continue;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
tsec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
tsec = bfd_com_section_ptr;
|
||
else
|
||
tsec = bfd_section_from_elf_index (ibfd, isym->st_shndx);
|
||
|
||
address = (tsec->output_section->vma
|
||
+ tsec->output_offset
|
||
+ isym->st_value);
|
||
if (valid_16bit_address (address))
|
||
{
|
||
local_plt_offsets[idx] = -1;
|
||
splt->size -= 4;
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
{
|
||
if (! info->keep_memory)
|
||
free (isymbuf);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we changed anything, walk the symbols again to reallocate
|
||
.plt entry addresses. */
|
||
if (*again && splt->size > 0)
|
||
{
|
||
bfd_vma entry = 0;
|
||
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
rl78_relax_plt_realloc, &entry);
|
||
|
||
for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next)
|
||
{
|
||
bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd);
|
||
unsigned int nlocals = elf_tdata (ibfd)->symtab_hdr.sh_info;
|
||
unsigned int idx;
|
||
|
||
if (! local_plt_offsets)
|
||
continue;
|
||
|
||
for (idx = 0; idx < nlocals; ++idx)
|
||
if (local_plt_offsets[idx] != (bfd_vma) -1)
|
||
{
|
||
local_plt_offsets[idx] = entry;
|
||
entry += 4;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Delete some bytes from a section while relaxing. */
|
||
|
||
static bfd_boolean
|
||
elf32_rl78_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count,
|
||
Elf_Internal_Rela *alignment_rel, int force_snip)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
unsigned int sec_shndx;
|
||
bfd_byte * contents;
|
||
Elf_Internal_Rela * irel;
|
||
Elf_Internal_Rela * irelend;
|
||
Elf_Internal_Sym * isym;
|
||
Elf_Internal_Sym * isymend;
|
||
bfd_vma toaddr;
|
||
unsigned int symcount;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
struct elf_link_hash_entry ** end_hashes;
|
||
|
||
if (!alignment_rel)
|
||
force_snip = 1;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
/* The deletion must stop at the next alignment boundary, if
|
||
ALIGNMENT_REL is non-NULL. */
|
||
toaddr = sec->size;
|
||
if (alignment_rel)
|
||
toaddr = alignment_rel->r_offset;
|
||
|
||
irel = elf_section_data (sec)->relocs;
|
||
if (irel == NULL)
|
||
{
|
||
_bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
|
||
irel = elf_section_data (sec)->relocs;
|
||
}
|
||
|
||
irelend = irel + sec->reloc_count;
|
||
|
||
/* Actually delete the bytes. */
|
||
memmove (contents + addr, contents + addr + count,
|
||
(size_t) (toaddr - addr - count));
|
||
|
||
/* If we don't have an alignment marker to worry about, we can just
|
||
shrink the section. Otherwise, we have to fill in the newly
|
||
created gap with NOP insns (0x03). */
|
||
if (force_snip)
|
||
sec->size -= count;
|
||
else
|
||
memset (contents + toaddr - count, 0x03, count);
|
||
|
||
/* Adjust all the relocs. */
|
||
for (; irel && irel < irelend; irel++)
|
||
{
|
||
/* Get the new reloc address. */
|
||
if (irel->r_offset > addr
|
||
&& (irel->r_offset < toaddr
|
||
|| (force_snip && irel->r_offset == toaddr)))
|
||
irel->r_offset -= count;
|
||
|
||
/* If we see an ALIGN marker at the end of the gap, we move it
|
||
to the beginning of the gap, since marking these gaps is what
|
||
they're for. */
|
||
if (irel->r_offset == toaddr
|
||
&& ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX
|
||
&& irel->r_addend & RL78_RELAXA_ALIGN)
|
||
irel->r_offset -= count;
|
||
}
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
isymend = isym + symtab_hdr->sh_info;
|
||
|
||
for (; isym < isymend; isym++)
|
||
{
|
||
/* If the symbol is in the range of memory we just moved, we
|
||
have to adjust its value. */
|
||
if (isym->st_shndx == sec_shndx
|
||
&& isym->st_value > addr
|
||
&& isym->st_value < toaddr)
|
||
isym->st_value -= count;
|
||
|
||
/* If the symbol *spans* the bytes we just deleted (i.e. it's
|
||
*end* is in the moved bytes but it's *start* isn't), then we
|
||
must adjust its size. */
|
||
if (isym->st_shndx == sec_shndx
|
||
&& isym->st_value < addr
|
||
&& isym->st_value + isym->st_size > addr
|
||
&& isym->st_value + isym->st_size < toaddr)
|
||
isym->st_size -= count;
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec)
|
||
{
|
||
/* As above, adjust the value if needed. */
|
||
if (sym_hash->root.u.def.value > addr
|
||
&& sym_hash->root.u.def.value < toaddr)
|
||
sym_hash->root.u.def.value -= count;
|
||
|
||
/* As above, adjust the size if needed. */
|
||
if (sym_hash->root.u.def.value < addr
|
||
&& sym_hash->root.u.def.value + sym_hash->size > addr
|
||
&& sym_hash->root.u.def.value + sym_hash->size < toaddr)
|
||
sym_hash->size -= count;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Used to sort relocs by address. If relocs have the same address,
|
||
we maintain their relative order, except that R_RL78_RH_RELAX
|
||
alignment relocs must be the first reloc for any given address. */
|
||
|
||
static void
|
||
reloc_bubblesort (Elf_Internal_Rela * r, int count)
|
||
{
|
||
int i;
|
||
bfd_boolean again;
|
||
bfd_boolean swappit;
|
||
|
||
/* This is almost a classic bubblesort. It's the slowest sort, but
|
||
we're taking advantage of the fact that the relocations are
|
||
mostly in order already (the assembler emits them that way) and
|
||
we need relocs with the same address to remain in the same
|
||
relative order. */
|
||
again = TRUE;
|
||
while (again)
|
||
{
|
||
again = FALSE;
|
||
for (i = 0; i < count - 1; i ++)
|
||
{
|
||
if (r[i].r_offset > r[i + 1].r_offset)
|
||
swappit = TRUE;
|
||
else if (r[i].r_offset < r[i + 1].r_offset)
|
||
swappit = FALSE;
|
||
else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX
|
||
&& (r[i + 1].r_addend & RL78_RELAXA_ALIGN))
|
||
swappit = TRUE;
|
||
else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX
|
||
&& (r[i + 1].r_addend & RL78_RELAXA_ELIGN)
|
||
&& !(ELF32_R_TYPE (r[i].r_info) == R_RL78_RH_RELAX
|
||
&& (r[i].r_addend & RL78_RELAXA_ALIGN)))
|
||
swappit = TRUE;
|
||
else
|
||
swappit = FALSE;
|
||
|
||
if (swappit)
|
||
{
|
||
Elf_Internal_Rela tmp;
|
||
|
||
tmp = r[i];
|
||
r[i] = r[i + 1];
|
||
r[i + 1] = tmp;
|
||
/* If we do move a reloc back, re-scan to see if it
|
||
needs to be moved even further back. This avoids
|
||
most of the O(n^2) behavior for our cases. */
|
||
if (i > 0)
|
||
i -= 2;
|
||
again = TRUE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
#define OFFSET_FOR_RELOC(rel, lrel, scale) \
|
||
rl78_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
|
||
lrel, abfd, sec, link_info, scale)
|
||
|
||
static bfd_vma
|
||
rl78_offset_for_reloc (bfd * abfd,
|
||
Elf_Internal_Rela * rel,
|
||
Elf_Internal_Shdr * symtab_hdr,
|
||
Elf_External_Sym_Shndx * shndx_buf ATTRIBUTE_UNUSED,
|
||
Elf_Internal_Sym * intsyms,
|
||
Elf_Internal_Rela ** lrel,
|
||
bfd * input_bfd,
|
||
asection * input_section,
|
||
struct bfd_link_info * info,
|
||
int * scale)
|
||
{
|
||
bfd_vma symval;
|
||
bfd_reloc_status_type r;
|
||
|
||
*scale = 1;
|
||
|
||
/* REL is the first of 1..N relocations. We compute the symbol
|
||
value for each relocation, then combine them if needed. LREL
|
||
gets a pointer to the last relocation used. */
|
||
while (1)
|
||
{
|
||
int32_t tmp1, tmp2;
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
asection *ssec;
|
||
|
||
isym = intsyms + ELF32_R_SYM (rel->r_info);
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
ssec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
ssec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
ssec = bfd_com_section_ptr;
|
||
else
|
||
ssec = bfd_section_from_elf_index (abfd,
|
||
isym->st_shndx);
|
||
|
||
/* Initial symbol value. */
|
||
symval = isym->st_value;
|
||
|
||
/* GAS may have made this symbol relative to a section, in
|
||
which case, we have to add the addend to find the
|
||
symbol. */
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
symval += rel->r_addend;
|
||
|
||
if (ssec)
|
||
{
|
||
if ((ssec->flags & SEC_MERGE)
|
||
&& ssec->sec_info_type == SEC_INFO_TYPE_MERGE)
|
||
symval = _bfd_merged_section_offset (abfd, & ssec,
|
||
elf_section_data (ssec)->sec_info,
|
||
symval);
|
||
}
|
||
|
||
/* Now make the offset relative to where the linker is putting it. */
|
||
if (ssec)
|
||
symval +=
|
||
ssec->output_section->vma + ssec->output_offset;
|
||
|
||
symval += rel->r_addend;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry * h;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
|
||
if (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
{
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it--it will be caught by the
|
||
regular reloc processing. */
|
||
if (lrel)
|
||
*lrel = rel;
|
||
return 0;
|
||
}
|
||
|
||
symval = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
symval += rel->r_addend;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_RL78_SYM:
|
||
RL78_STACK_PUSH (symval);
|
||
break;
|
||
|
||
case R_RL78_OPneg:
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 = - tmp1;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPadd:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 += tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPsub:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp2 -= tmp1;
|
||
RL78_STACK_PUSH (tmp2);
|
||
break;
|
||
|
||
case R_RL78_OPmul:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 *= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPdiv:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 /= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPshla:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 <<= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPshra:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 >>= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPsctsize:
|
||
RL78_STACK_PUSH (input_section->size);
|
||
break;
|
||
|
||
case R_RL78_OPscttop:
|
||
RL78_STACK_PUSH (input_section->output_section->vma);
|
||
break;
|
||
|
||
case R_RL78_OPand:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 &= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPor:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 |= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPxor:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 ^= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPnot:
|
||
RL78_STACK_POP (tmp1);
|
||
tmp1 = ~ tmp1;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPmod:
|
||
RL78_STACK_POP (tmp1);
|
||
RL78_STACK_POP (tmp2);
|
||
tmp1 %= tmp2;
|
||
RL78_STACK_PUSH (tmp1);
|
||
break;
|
||
|
||
case R_RL78_OPromtop:
|
||
RL78_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
case R_RL78_OPramtop:
|
||
RL78_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
|
||
break;
|
||
|
||
case R_RL78_DIR16UL:
|
||
case R_RL78_DIR8UL:
|
||
case R_RL78_ABS16UL:
|
||
case R_RL78_ABS8UL:
|
||
if (rl78_stack_top)
|
||
RL78_STACK_POP (symval);
|
||
if (lrel)
|
||
*lrel = rel;
|
||
*scale = 4;
|
||
return symval;
|
||
|
||
case R_RL78_DIR16UW:
|
||
case R_RL78_DIR8UW:
|
||
case R_RL78_ABS16UW:
|
||
case R_RL78_ABS8UW:
|
||
if (rl78_stack_top)
|
||
RL78_STACK_POP (symval);
|
||
if (lrel)
|
||
*lrel = rel;
|
||
*scale = 2;
|
||
return symval;
|
||
|
||
default:
|
||
if (rl78_stack_top)
|
||
RL78_STACK_POP (symval);
|
||
if (lrel)
|
||
*lrel = rel;
|
||
return symval;
|
||
}
|
||
|
||
rel ++;
|
||
}
|
||
}
|
||
|
||
struct {
|
||
int prefix; /* or -1 for "no prefix" */
|
||
int insn; /* or -1 for "end of list" */
|
||
int insn_for_saddr; /* or -1 for "no alternative" */
|
||
int insn_for_sfr; /* or -1 for "no alternative" */
|
||
} relax_addr16[] = {
|
||
{ -1, 0x02, 0x06, -1 }, /* ADDW AX, !addr16 */
|
||
{ -1, 0x22, 0x26, -1 }, /* SUBW AX, !addr16 */
|
||
{ -1, 0x42, 0x46, -1 }, /* CMPW AX, !addr16 */
|
||
{ -1, 0x40, 0x4a, -1 }, /* CMP !addr16, #byte */
|
||
|
||
{ -1, 0x0f, 0x0b, -1 }, /* ADD A, !addr16 */
|
||
{ -1, 0x1f, 0x1b, -1 }, /* ADDC A, !addr16 */
|
||
{ -1, 0x2f, 0x2b, -1 }, /* SUB A, !addr16 */
|
||
{ -1, 0x3f, 0x3b, -1 }, /* SUBC A, !addr16 */
|
||
{ -1, 0x4f, 0x4b, -1 }, /* CMP A, !addr16 */
|
||
{ -1, 0x5f, 0x5b, -1 }, /* AND A, !addr16 */
|
||
{ -1, 0x6f, 0x6b, -1 }, /* OR A, !addr16 */
|
||
{ -1, 0x7f, 0x7b, -1 }, /* XOR A, !addr16 */
|
||
|
||
{ -1, 0x8f, 0x8d, 0x8e }, /* MOV A, !addr16 */
|
||
{ -1, 0x9f, 0x9d, 0x9e }, /* MOV !addr16, A */
|
||
{ -1, 0xaf, 0xad, 0xae }, /* MOVW AX, !addr16 */
|
||
{ -1, 0xbf, 0xbd, 0xbe }, /* MOVW !addr16, AX */
|
||
{ -1, 0xcf, 0xcd, 0xce }, /* MOVW !addr16, #word */
|
||
|
||
{ -1, 0xa0, 0xa4, -1 }, /* INC !addr16 */
|
||
{ -1, 0xa2, 0xa6, -1 }, /* INCW !addr16 */
|
||
{ -1, 0xb0, 0xb4, -1 }, /* DEC !addr16 */
|
||
{ -1, 0xb2, 0xb6, -1 }, /* DECW !addr16 */
|
||
|
||
{ -1, 0xd5, 0xd4, -1 }, /* CMP0 !addr16 */
|
||
{ -1, 0xe5, 0xe4, -1 }, /* ONEB !addr16 */
|
||
{ -1, 0xf5, 0xf4, -1 }, /* CLRB !addr16 */
|
||
|
||
{ -1, 0xd9, 0xd8, -1 }, /* MOV X, !addr16 */
|
||
{ -1, 0xe9, 0xe8, -1 }, /* MOV B, !addr16 */
|
||
{ -1, 0xf9, 0xf8, -1 }, /* MOV C, !addr16 */
|
||
{ -1, 0xdb, 0xda, -1 }, /* MOVW BC, !addr16 */
|
||
{ -1, 0xeb, 0xea, -1 }, /* MOVW DE, !addr16 */
|
||
{ -1, 0xfb, 0xfa, -1 }, /* MOVW HL, !addr16 */
|
||
|
||
{ 0x61, 0xaa, 0xa8, -1 }, /* XCH A, !addr16 */
|
||
|
||
{ 0x71, 0x00, 0x02, 0x0a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x10, 0x12, 0x1a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x20, 0x22, 0x2a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x30, 0x32, 0x3a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x40, 0x42, 0x4a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x50, 0x52, 0x5a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x60, 0x62, 0x6a }, /* SET1 !addr16.0 */
|
||
{ 0x71, 0x70, 0x72, 0x7a }, /* SET1 !addr16.0 */
|
||
|
||
{ 0x71, 0x08, 0x03, 0x0b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x18, 0x13, 0x1b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x28, 0x23, 0x2b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x38, 0x33, 0x3b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x48, 0x43, 0x4b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x58, 0x53, 0x5b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x68, 0x63, 0x6b }, /* CLR1 !addr16.0 */
|
||
{ 0x71, 0x78, 0x73, 0x7b }, /* CLR1 !addr16.0 */
|
||
|
||
{ -1, -1, -1, -1 }
|
||
};
|
||
|
||
/* Relax one section. */
|
||
|
||
static bfd_boolean
|
||
rl78_elf_relax_section
|
||
(bfd * abfd,
|
||
asection * sec,
|
||
struct bfd_link_info * link_info,
|
||
bfd_boolean * again)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
Elf_Internal_Shdr * shndx_hdr;
|
||
Elf_Internal_Rela * internal_relocs;
|
||
Elf_Internal_Rela * free_relocs = NULL;
|
||
Elf_Internal_Rela * irel;
|
||
Elf_Internal_Rela * srel;
|
||
Elf_Internal_Rela * irelend;
|
||
Elf_Internal_Rela * next_alignment;
|
||
bfd_byte * contents = NULL;
|
||
bfd_byte * free_contents = NULL;
|
||
Elf_Internal_Sym * intsyms = NULL;
|
||
Elf_Internal_Sym * free_intsyms = NULL;
|
||
Elf_External_Sym_Shndx * shndx_buf = NULL;
|
||
bfd_vma pc;
|
||
bfd_vma symval ATTRIBUTE_UNUSED = 0;
|
||
int pcrel ATTRIBUTE_UNUSED = 0;
|
||
int code ATTRIBUTE_UNUSED = 0;
|
||
int section_alignment_glue;
|
||
int scale;
|
||
|
||
if (abfd == elf_hash_table (link_info)->dynobj
|
||
&& strcmp (sec->name, ".plt") == 0)
|
||
return rl78_elf_relax_plt_section (abfd, sec, link_info, again);
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
/* We don't have to do anything for a relocatable link, if
|
||
this section does not have relocs, or if this is not a
|
||
code section. */
|
||
if (link_info->relocatable
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
|
||
|
||
/* Get the section contents. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
/* Go get them off disk. */
|
||
else
|
||
{
|
||
if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
|
||
/* Read this BFD's symbols. */
|
||
/* Get cached copy if it exists. */
|
||
if (symtab_hdr->contents != NULL)
|
||
intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL);
|
||
symtab_hdr->contents = (bfd_byte *) intsyms;
|
||
}
|
||
|
||
if (shndx_hdr->sh_size != 0)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
amt = symtab_hdr->sh_info;
|
||
amt *= sizeof (Elf_External_Sym_Shndx);
|
||
shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
|
||
if (shndx_buf == NULL)
|
||
goto error_return;
|
||
if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
|
||
|| bfd_bread (shndx_buf, amt, abfd) != amt)
|
||
goto error_return;
|
||
shndx_hdr->contents = (bfd_byte *) shndx_buf;
|
||
}
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
if (! link_info->keep_memory)
|
||
free_relocs = internal_relocs;
|
||
|
||
/* The RL_ relocs must be just before the operand relocs they go
|
||
with, so we must sort them to guarantee this. We use bubblesort
|
||
instead of qsort so we can guarantee that relocs with the same
|
||
address remain in the same relative order. */
|
||
reloc_bubblesort (internal_relocs, sec->reloc_count);
|
||
|
||
/* Walk through them looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
|
||
|
||
/* This will either be NULL or a pointer to the next alignment
|
||
relocation. */
|
||
next_alignment = internal_relocs;
|
||
|
||
/* We calculate worst case shrinkage caused by alignment directives.
|
||
No fool-proof, but better than either ignoring the problem or
|
||
doing heavy duty analysis of all the alignment markers in all
|
||
input sections. */
|
||
section_alignment_glue = 0;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
if (ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX
|
||
&& irel->r_addend & RL78_RELAXA_ALIGN)
|
||
{
|
||
int this_glue = 1 << (irel->r_addend & RL78_RELAXA_ANUM);
|
||
|
||
if (section_alignment_glue < this_glue)
|
||
section_alignment_glue = this_glue;
|
||
}
|
||
/* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
|
||
shrinkage. */
|
||
section_alignment_glue *= 2;
|
||
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
unsigned char *insn;
|
||
int nrelocs;
|
||
|
||
/* The insns we care about are all marked with one of these. */
|
||
if (ELF32_R_TYPE (irel->r_info) != R_RL78_RH_RELAX)
|
||
continue;
|
||
|
||
if (irel->r_addend & RL78_RELAXA_ALIGN
|
||
|| next_alignment == internal_relocs)
|
||
{
|
||
/* When we delete bytes, we need to maintain all the alignments
|
||
indicated. In addition, we need to be careful about relaxing
|
||
jumps across alignment boundaries - these displacements
|
||
*grow* when we delete bytes. For now, don't shrink
|
||
displacements across an alignment boundary, just in case.
|
||
Note that this only affects relocations to the same
|
||
section. */
|
||
next_alignment += 2;
|
||
while (next_alignment < irelend
|
||
&& (ELF32_R_TYPE (next_alignment->r_info) != R_RL78_RH_RELAX
|
||
|| !(next_alignment->r_addend & RL78_RELAXA_ELIGN)))
|
||
next_alignment ++;
|
||
if (next_alignment >= irelend || next_alignment->r_offset == 0)
|
||
next_alignment = NULL;
|
||
}
|
||
|
||
/* When we hit alignment markers, see if we've shrunk enough
|
||
before them to reduce the gap without violating the alignment
|
||
requirements. */
|
||
if (irel->r_addend & RL78_RELAXA_ALIGN)
|
||
{
|
||
/* At this point, the next relocation *should* be the ELIGN
|
||
end marker. */
|
||
Elf_Internal_Rela *erel = irel + 1;
|
||
unsigned int alignment, nbytes;
|
||
|
||
if (ELF32_R_TYPE (erel->r_info) != R_RL78_RH_RELAX)
|
||
continue;
|
||
if (!(erel->r_addend & RL78_RELAXA_ELIGN))
|
||
continue;
|
||
|
||
alignment = 1 << (irel->r_addend & RL78_RELAXA_ANUM);
|
||
|
||
if (erel->r_offset - irel->r_offset < alignment)
|
||
continue;
|
||
|
||
nbytes = erel->r_offset - irel->r_offset;
|
||
nbytes /= alignment;
|
||
nbytes *= alignment;
|
||
|
||
elf32_rl78_relax_delete_bytes (abfd, sec, erel->r_offset-nbytes, nbytes, next_alignment,
|
||
erel->r_offset == sec->size);
|
||
*again = TRUE;
|
||
|
||
continue;
|
||
}
|
||
|
||
if (irel->r_addend & RL78_RELAXA_ELIGN)
|
||
continue;
|
||
|
||
insn = contents + irel->r_offset;
|
||
|
||
nrelocs = irel->r_addend & RL78_RELAXA_RNUM;
|
||
|
||
/* At this point, we have an insn that is a candidate for linker
|
||
relaxation. There are NRELOCS relocs following that may be
|
||
relaxed, although each reloc may be made of more than one
|
||
reloc entry (such as gp-rel symbols). */
|
||
|
||
/* Get the value of the symbol referred to by the reloc. Just
|
||
in case this is the last reloc in the list, use the RL's
|
||
addend to choose between this reloc (no addend) or the next
|
||
(yes addend, which means at least one following reloc). */
|
||
|
||
/* srel points to the "current" reloction for this insn -
|
||
actually the last reloc for a given operand, which is the one
|
||
we need to update. We check the relaxations in the same
|
||
order that the relocations happen, so we'll just push it
|
||
along as we go. */
|
||
srel = irel;
|
||
|
||
pc = sec->output_section->vma + sec->output_offset
|
||
+ srel->r_offset;
|
||
|
||
#define GET_RELOC \
|
||
BFD_ASSERT (nrelocs > 0); \
|
||
symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
|
||
pcrel = symval - pc + srel->r_addend; \
|
||
nrelocs --;
|
||
|
||
#define SNIPNR(offset, nbytes) \
|
||
elf32_rl78_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0);
|
||
#define SNIP(offset, nbytes, newtype) \
|
||
SNIPNR (offset, nbytes); \
|
||
srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
|
||
|
||
/* The order of these bit tests must match the order that the
|
||
relocs appear in. Since we sorted those by offset, we can
|
||
predict them. */
|
||
|
||
/*----------------------------------------------------------------------*/
|
||
/* EF ad BR $rel8 pcrel
|
||
ED al ah BR !abs16 abs
|
||
EE al ah BR $!rel16 pcrel
|
||
EC al ah as BR !!abs20 abs
|
||
|
||
FD al ah CALL !abs16 abs
|
||
FE al ah CALL $!rel16 pcrel
|
||
FC al ah as CALL !!abs20 abs
|
||
|
||
DC ad BC $rel8
|
||
DE ad BNC $rel8
|
||
DD ad BZ $rel8
|
||
DF ad BNZ $rel8
|
||
61 C3 ad BH $rel8
|
||
61 D3 ad BNH $rel8
|
||
61 C8 EF ad SKC ; BR $rel8
|
||
61 D8 EF ad SKNC ; BR $rel8
|
||
61 E8 EF ad SKZ ; BR $rel8
|
||
61 F8 EF ad SKNZ ; BR $rel8
|
||
61 E3 EF ad SKH ; BR $rel8
|
||
61 F3 EF ad SKNH ; BR $rel8
|
||
*/
|
||
|
||
if ((irel->r_addend & RL78_RELAXA_MASK) == RL78_RELAXA_BRA)
|
||
{
|
||
/* SKIP opcodes that skip non-branches will have a relax tag
|
||
but no corresponding symbol to relax against; we just
|
||
skip those. */
|
||
if (irel->r_addend & RL78_RELAXA_RNUM)
|
||
{
|
||
GET_RELOC;
|
||
}
|
||
|
||
switch (insn[0])
|
||
{
|
||
case 0xec: /* BR !!abs20 */
|
||
|
||
if (pcrel < 127
|
||
&& pcrel > -127)
|
||
{
|
||
insn[0] = 0xef;
|
||
insn[1] = pcrel;
|
||
SNIP (2, 2, R_RL78_DIR8S_PCREL);
|
||
*again = TRUE;
|
||
}
|
||
else if (symval < 65536)
|
||
{
|
||
insn[0] = 0xed;
|
||
insn[1] = symval & 0xff;
|
||
insn[2] = symval >> 8;
|
||
SNIP (2, 1, R_RL78_DIR16S);
|
||
*again = TRUE;
|
||
}
|
||
else if (pcrel < 32767
|
||
&& pcrel > -32767)
|
||
{
|
||
insn[0] = 0xee;
|
||
insn[1] = pcrel & 0xff;
|
||
insn[2] = pcrel >> 8;
|
||
SNIP (2, 1, R_RL78_DIR16S_PCREL);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0xee: /* BR $!pcrel16 */
|
||
case 0xed: /* BR $!abs16 */
|
||
if (pcrel < 127
|
||
&& pcrel > -127)
|
||
{
|
||
insn[0] = 0xef;
|
||
insn[1] = pcrel;
|
||
SNIP (2, 1, R_RL78_DIR8S_PCREL);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0xfc: /* CALL !!abs20 */
|
||
if (symval < 65536)
|
||
{
|
||
insn[0] = 0xfd;
|
||
insn[1] = symval & 0xff;
|
||
insn[2] = symval >> 8;
|
||
SNIP (2, 1, R_RL78_DIR16S);
|
||
*again = TRUE;
|
||
}
|
||
else if (pcrel < 32767
|
||
&& pcrel > -32767)
|
||
{
|
||
insn[0] = 0xfe;
|
||
insn[1] = pcrel & 0xff;
|
||
insn[2] = pcrel >> 8;
|
||
SNIP (2, 1, R_RL78_DIR16S_PCREL);
|
||
*again = TRUE;
|
||
}
|
||
break;
|
||
|
||
case 0x61: /* PREFIX */
|
||
/* For SKIP/BR, we change the BR opcode and delete the
|
||
SKIP. That way, we don't have to find and change the
|
||
relocation for the BR. */
|
||
/* Note that, for the case where we're skipping some
|
||
other insn, we have no "other" reloc but that's safe
|
||
here anyway. */
|
||
switch (insn[1])
|
||
{
|
||
case 0xc8: /* SKC */
|
||
if (insn[2] == 0xef)
|
||
{
|
||
insn[2] = 0xde; /* BNC */
|
||
SNIPNR (0, 2);
|
||
}
|
||
break;
|
||
|
||
case 0xd8: /* SKNC */
|
||
if (insn[2] == 0xef)
|
||
{
|
||
insn[2] = 0xdc; /* BC */
|
||
SNIPNR (0, 2);
|
||
}
|
||
break;
|
||
|
||
case 0xe8: /* SKZ */
|
||
if (insn[2] == 0xef)
|
||
{
|
||
insn[2] = 0xdf; /* BNZ */
|
||
SNIPNR (0, 2);
|
||
}
|
||
break;
|
||
|
||
case 0xf8: /* SKNZ */
|
||
if (insn[2] == 0xef)
|
||
{
|
||
insn[2] = 0xdd; /* BZ */
|
||
SNIPNR (0, 2);
|
||
}
|
||
break;
|
||
|
||
case 0xe3: /* SKH */
|
||
if (insn[2] == 0xef)
|
||
{
|
||
insn[2] = 0xd3; /* BNH */
|
||
SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */
|
||
}
|
||
break;
|
||
|
||
case 0xf3: /* SKNH */
|
||
if (insn[2] == 0xef)
|
||
{
|
||
insn[2] = 0xc3; /* BH */
|
||
SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */
|
||
}
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
}
|
||
|
||
if ((irel->r_addend & RL78_RELAXA_MASK) == RL78_RELAXA_ADDR16)
|
||
{
|
||
/*----------------------------------------------------------------------*/
|
||
/* Some insns have both a 16-bit address operand and an 8-bit
|
||
variant if the address is within a special range:
|
||
|
||
Address 16-bit operand SADDR range SFR range
|
||
FFF00-FFFFF 0xff00-0xffff 0x00-0xff
|
||
FFE20-FFF1F 0xfe20-0xff1f 0x00-0xff
|
||
|
||
The RELAX_ADDR16[] array has the insn encodings for the
|
||
16-bit operand version, as well as the SFR and SADDR
|
||
variants. We only need to replace the encodings and
|
||
adjust the operand.
|
||
|
||
Note: we intentionally do not attempt to decode and skip
|
||
any ES: prefix, as adding ES: means the addr16 (likely)
|
||
no longer points to saddr/sfr space.
|
||
*/
|
||
|
||
int is_sfr;
|
||
int is_saddr;
|
||
int idx;
|
||
int poff;
|
||
|
||
GET_RELOC;
|
||
|
||
if (0xffe20 <= symval && symval <= 0xfffff)
|
||
{
|
||
|
||
is_saddr = (0xffe20 <= symval && symval <= 0xfff1f);
|
||
is_sfr = (0xfff00 <= symval && symval <= 0xfffff);
|
||
|
||
for (idx = 0; relax_addr16[idx].insn != -1; idx ++)
|
||
{
|
||
if (relax_addr16[idx].prefix != -1
|
||
&& insn[0] == relax_addr16[idx].prefix
|
||
&& insn[1] == relax_addr16[idx].insn)
|
||
{
|
||
poff = 1;
|
||
}
|
||
else if (relax_addr16[idx].prefix == -1
|
||
&& insn[0] == relax_addr16[idx].insn)
|
||
{
|
||
poff = 0;
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* We have a matched insn, and poff is 0 or 1 depending
|
||
on the base pattern size. */
|
||
|
||
if (is_sfr && relax_addr16[idx].insn_for_sfr != -1)
|
||
{
|
||
insn[poff] = relax_addr16[idx].insn_for_sfr;
|
||
SNIP (poff+2, 1, R_RL78_RH_SFR);
|
||
}
|
||
|
||
else if (is_saddr && relax_addr16[idx].insn_for_saddr != -1)
|
||
{
|
||
insn[poff] = relax_addr16[idx].insn_for_saddr;
|
||
SNIP (poff+2, 1, R_RL78_RH_SADDR);
|
||
}
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
/*----------------------------------------------------------------------*/
|
||
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (free_relocs != NULL)
|
||
free (free_relocs);
|
||
|
||
if (free_contents != NULL)
|
||
free (free_contents);
|
||
|
||
if (shndx_buf != NULL)
|
||
{
|
||
shndx_hdr->contents = NULL;
|
||
free (shndx_buf);
|
||
}
|
||
|
||
if (free_intsyms != NULL)
|
||
free (free_intsyms);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
|
||
#define ELF_ARCH bfd_arch_rl78
|
||
#define ELF_MACHINE_CODE EM_RL78
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
|
||
#define TARGET_LITTLE_SYM rl78_elf32_vec
|
||
#define TARGET_LITTLE_NAME "elf32-rl78"
|
||
|
||
#define elf_info_to_howto_rel NULL
|
||
#define elf_info_to_howto rl78_info_to_howto_rela
|
||
#define elf_backend_object_p rl78_elf_object_p
|
||
#define elf_backend_relocate_section rl78_elf_relocate_section
|
||
#define elf_symbol_leading_char ('_')
|
||
#define elf_backend_can_gc_sections 1
|
||
|
||
#define bfd_elf32_bfd_reloc_type_lookup rl78_reloc_type_lookup
|
||
#define bfd_elf32_bfd_reloc_name_lookup rl78_reloc_name_lookup
|
||
#define bfd_elf32_bfd_set_private_flags rl78_elf_set_private_flags
|
||
#define bfd_elf32_bfd_merge_private_bfd_data rl78_elf_merge_private_bfd_data
|
||
#define bfd_elf32_bfd_print_private_bfd_data rl78_elf_print_private_bfd_data
|
||
|
||
#define bfd_elf32_bfd_relax_section rl78_elf_relax_section
|
||
#define elf_backend_check_relocs rl78_elf_check_relocs
|
||
#define elf_backend_always_size_sections \
|
||
rl78_elf_always_size_sections
|
||
#define elf_backend_finish_dynamic_sections \
|
||
rl78_elf_finish_dynamic_sections
|
||
|
||
#include "elf32-target.h"
|