Retro68/binutils/opcodes/ia64-opc.c
2018-12-28 16:25:28 +01:00

730 lines
18 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ia64-opc.c -- Functions to access the compacted opcode table
Copyright (C) 1999-2018 Free Software Foundation, Inc.
Written by Bob Manson of Cygnus Solutions, <manson@cygnus.com>
This file is part of the GNU opcodes library.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not, write to the
Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "libiberty.h"
#include "ia64-asmtab.h"
#include "ia64-asmtab.c"
static void get_opc_prefix (const char **, char *);
static short int find_string_ent (const char *);
static short int find_main_ent (short int);
static short int find_completer (short int, short int, const char *);
static ia64_insn apply_completer (ia64_insn, int);
static int extract_op_bits (int, int, int);
static int extract_op (int, int *, unsigned int *);
static int opcode_verify (ia64_insn, int, enum ia64_insn_type);
static int locate_opcode_ent (ia64_insn, enum ia64_insn_type);
static struct ia64_opcode *make_ia64_opcode
(ia64_insn, const char *, int, int);
static struct ia64_opcode *ia64_find_matching_opcode
(const char *, short int);
const struct ia64_templ_desc ia64_templ_desc[16] =
{
{ 0, { IA64_UNIT_M, IA64_UNIT_I, IA64_UNIT_I }, "MII" }, /* 0 */
{ 2, { IA64_UNIT_M, IA64_UNIT_I, IA64_UNIT_I }, "MII" },
{ 0, { IA64_UNIT_M, IA64_UNIT_L, IA64_UNIT_X }, "MLX" },
{ 0, { 0, }, "-3-" },
{ 0, { IA64_UNIT_M, IA64_UNIT_M, IA64_UNIT_I }, "MMI" }, /* 4 */
{ 1, { IA64_UNIT_M, IA64_UNIT_M, IA64_UNIT_I }, "MMI" },
{ 0, { IA64_UNIT_M, IA64_UNIT_F, IA64_UNIT_I }, "MFI" },
{ 0, { IA64_UNIT_M, IA64_UNIT_M, IA64_UNIT_F }, "MMF" },
{ 0, { IA64_UNIT_M, IA64_UNIT_I, IA64_UNIT_B }, "MIB" }, /* 8 */
{ 0, { IA64_UNIT_M, IA64_UNIT_B, IA64_UNIT_B }, "MBB" },
{ 0, { 0, }, "-a-" },
{ 0, { IA64_UNIT_B, IA64_UNIT_B, IA64_UNIT_B }, "BBB" },
{ 0, { IA64_UNIT_M, IA64_UNIT_M, IA64_UNIT_B }, "MMB" }, /* c */
{ 0, { 0, }, "-d-" },
{ 0, { IA64_UNIT_M, IA64_UNIT_F, IA64_UNIT_B }, "MFB" },
{ 0, { 0, }, "-f-" },
};
/* Copy the prefix contained in *PTR (up to a '.' or a NUL) to DEST.
PTR will be adjusted to point to the start of the next portion
of the opcode, or at the NUL character. */
static void
get_opc_prefix (const char **ptr, char *dest)
{
char *c = strchr (*ptr, '.');
if (c != NULL)
{
memcpy (dest, *ptr, c - *ptr);
dest[c - *ptr] = '\0';
*ptr = c + 1;
}
else
{
int l = strlen (*ptr);
memcpy (dest, *ptr, l);
dest[l] = '\0';
*ptr += l;
}
}
/* Find the index of the entry in the string table corresponding to
STR; return -1 if one does not exist. */
static short
find_string_ent (const char *str)
{
short start = 0;
short end = sizeof (ia64_strings) / sizeof (const char *);
short i = (start + end) / 2;
if (strcmp (str, ia64_strings[end - 1]) > 0)
{
return -1;
}
while (start <= end)
{
int c = strcmp (str, ia64_strings[i]);
if (c < 0)
{
end = i - 1;
}
else if (c == 0)
{
return i;
}
else
{
start = i + 1;
}
i = (start + end) / 2;
}
return -1;
}
/* Find the opcode in the main opcode table whose name is STRINGINDEX, or
return -1 if one does not exist. */
static short
find_main_ent (short nameindex)
{
short start = 0;
short end = sizeof (main_table) / sizeof (struct ia64_main_table);
short i = (start + end) / 2;
if (nameindex < main_table[0].name_index
|| nameindex > main_table[end - 1].name_index)
{
return -1;
}
while (start <= end)
{
if (nameindex < main_table[i].name_index)
{
end = i - 1;
}
else if (nameindex == main_table[i].name_index)
{
while (i > 0 && main_table[i - 1].name_index == nameindex)
{
i--;
}
return i;
}
else
{
start = i + 1;
}
i = (start + end) / 2;
}
return -1;
}
/* Find the index of the entry in the completer table that is part of
MAIN_ENT (starting from PREV_COMPLETER) that matches NAME, or
return -1 if one does not exist. */
static short
find_completer (short main_ent, short prev_completer, const char *name)
{
short name_index = find_string_ent (name);
if (name_index < 0)
{
return -1;
}
if (prev_completer == -1)
{
prev_completer = main_table[main_ent].completers;
}
else
{
prev_completer = completer_table[prev_completer].subentries;
}
while (prev_completer != -1)
{
if (completer_table[prev_completer].name_index == name_index)
{
return prev_completer;
}
prev_completer = completer_table[prev_completer].alternative;
}
return -1;
}
/* Apply the completer referred to by COMPLETER_INDEX to OPCODE, and
return the result. */
static ia64_insn
apply_completer (ia64_insn opcode, int completer_index)
{
ia64_insn mask = completer_table[completer_index].mask;
ia64_insn bits = completer_table[completer_index].bits;
int shiftamt = (completer_table[completer_index].offset & 63);
mask = mask << shiftamt;
bits = bits << shiftamt;
opcode = (opcode & ~mask) | bits;
return opcode;
}
/* Extract BITS number of bits starting from OP_POINTER + BITOFFSET in
the dis_table array, and return its value. (BITOFFSET is numbered
starting from MSB to LSB, so a BITOFFSET of 0 indicates the MSB of the
first byte in OP_POINTER.) */
static int
extract_op_bits (int op_pointer, int bitoffset, int bits)
{
int res = 0;
op_pointer += (bitoffset / 8);
if (bitoffset % 8)
{
unsigned int op = dis_table[op_pointer++];
int numb = 8 - (bitoffset % 8);
int mask = (1 << numb) - 1;
int bata = (bits < numb) ? bits : numb;
int delta = numb - bata;
res = (res << bata) | ((op & mask) >> delta);
bitoffset += bata;
bits -= bata;
}
while (bits >= 8)
{
res = (res << 8) | (dis_table[op_pointer++] & 255);
bits -= 8;
}
if (bits > 0)
{
unsigned int op = (dis_table[op_pointer++] & 255);
res = (res << bits) | (op >> (8 - bits));
}
return res;
}
/* Examine the state machine entry at OP_POINTER in the dis_table
array, and extract its values into OPVAL and OP. The length of the
state entry in bits is returned. */
static int
extract_op (int op_pointer, int *opval, unsigned int *op)
{
int oplen = 5;
*op = dis_table[op_pointer];
if ((*op) & 0x40)
{
opval[0] = extract_op_bits (op_pointer, oplen, 5);
oplen += 5;
}
switch ((*op) & 0x30)
{
case 0x10:
{
opval[1] = extract_op_bits (op_pointer, oplen, 8);
oplen += 8;
opval[1] += op_pointer;
break;
}
case 0x20:
{
opval[1] = extract_op_bits (op_pointer, oplen, 16);
if (! (opval[1] & 32768))
{
opval[1] += op_pointer;
}
oplen += 16;
break;
}
case 0x30:
{
oplen--;
opval[2] = extract_op_bits (op_pointer, oplen, 12);
oplen += 12;
opval[2] |= 32768;
break;
}
}
if (((*op) & 0x08) && (((*op) & 0x30) != 0x30))
{
opval[2] = extract_op_bits (op_pointer, oplen, 16);
oplen += 16;
if (! (opval[2] & 32768))
{
opval[2] += op_pointer;
}
}
return oplen;
}
/* Returns a non-zero value if the opcode in the main_table list at
PLACE matches OPCODE and is of type TYPE. */
static int
opcode_verify (ia64_insn opcode, int place, enum ia64_insn_type type)
{
if (main_table[place].opcode_type != type)
{
return 0;
}
if (main_table[place].flags
& (IA64_OPCODE_F2_EQ_F3 | IA64_OPCODE_LEN_EQ_64MCNT))
{
const struct ia64_operand *o1, *o2;
ia64_insn f2, f3;
if (main_table[place].flags & IA64_OPCODE_F2_EQ_F3)
{
o1 = elf64_ia64_operands + IA64_OPND_F2;
o2 = elf64_ia64_operands + IA64_OPND_F3;
(*o1->extract) (o1, opcode, &f2);
(*o2->extract) (o2, opcode, &f3);
if (f2 != f3)
return 0;
}
else
{
ia64_insn len, count;
/* length must equal 64-count: */
o1 = elf64_ia64_operands + IA64_OPND_LEN6;
o2 = elf64_ia64_operands + main_table[place].operands[2];
(*o1->extract) (o1, opcode, &len);
(*o2->extract) (o2, opcode, &count);
if (len != 64 - count)
return 0;
}
}
return 1;
}
/* Find an instruction entry in the ia64_dis_names array that matches
opcode OPCODE and is of type TYPE. Returns either a positive index
into the array, or a negative value if an entry for OPCODE could
not be found. Checks all matches and returns the one with the highest
priority. */
static int
locate_opcode_ent (ia64_insn opcode, enum ia64_insn_type type)
{
int currtest[41];
int bitpos[41];
int op_ptr[41];
int currstatenum = 0;
short found_disent = -1;
short found_priority = -1;
currtest[currstatenum] = 0;
op_ptr[currstatenum] = 0;
bitpos[currstatenum] = 40;
while (1)
{
int op_pointer = op_ptr[currstatenum];
unsigned int op;
int currbitnum = bitpos[currstatenum];
int oplen;
int opval[3] = {0};
int next_op;
int currbit;
oplen = extract_op (op_pointer, opval, &op);
bitpos[currstatenum] = currbitnum;
/* Skip opval[0] bits in the instruction. */
if (op & 0x40)
{
currbitnum -= opval[0];
}
/* The value of the current bit being tested. */
currbit = opcode & (((ia64_insn) 1) << currbitnum) ? 1 : 0;
next_op = -1;
/* We always perform the tests specified in the current state in
a particular order, falling through to the next test if the
previous one failed. */
switch (currtest[currstatenum])
{
case 0:
currtest[currstatenum]++;
if (currbit == 0 && (op & 0x80))
{
/* Check for a zero bit. If this test solely checks for
a zero bit, we can check for up to 8 consecutive zero
bits (the number to check is specified by the lower 3
bits in the state code.)
If the state instruction matches, we go to the very
next state instruction; otherwise, try the next test. */
if ((op & 0xf8) == 0x80)
{
int count = op & 0x7;
int x;
for (x = 0; x <= count; x++)
{
int i =
opcode & (((ia64_insn) 1) << (currbitnum - x)) ? 1 : 0;
if (i)
{
break;
}
}
if (x > count)
{
next_op = op_pointer + ((oplen + 7) / 8);
currbitnum -= count;
break;
}
}
else if (! currbit)
{
next_op = op_pointer + ((oplen + 7) / 8);
break;
}
}
/* FALLTHROUGH */
case 1:
/* If the bit in the instruction is one, go to the state
instruction specified by opval[1]. */
currtest[currstatenum]++;
if (currbit && (op & 0x30) != 0 && ((op & 0x30) != 0x30))
{
next_op = opval[1];
break;
}
/* FALLTHROUGH */
case 2:
/* Don't care. Skip the current bit and go to the state
instruction specified by opval[2].
An encoding of 0x30 is special; this means that a 12-bit
offset into the ia64_dis_names[] array is specified. */
currtest[currstatenum]++;
if ((op & 0x08) || ((op & 0x30) == 0x30))
{
next_op = opval[2];
break;
}
}
/* If bit 15 is set in the address of the next state, an offset
in the ia64_dis_names array was specified instead. We then
check to see if an entry in the list of opcodes matches the
opcode we were given; if so, we have succeeded. */
if ((next_op >= 0) && (next_op & 32768))
{
short disent = next_op & 32767;
short priority = -1;
if (next_op > 65535)
{
abort ();
}
/* Run through the list of opcodes to check, trying to find
one that matches. */
while (disent >= 0)
{
int place = ia64_dis_names[disent].insn_index;
priority = ia64_dis_names[disent].priority;
if (opcode_verify (opcode, place, type)
&& priority > found_priority)
{
break;
}
if (ia64_dis_names[disent].next_flag)
{
disent++;
}
else
{
disent = -1;
}
}
if (disent >= 0)
{
found_disent = disent;
found_priority = priority;
}
/* Try the next test in this state, regardless of whether a match
was found. */
next_op = -2;
}
/* next_op == -1 is "back up to the previous state".
next_op == -2 is "stay in this state and try the next test".
Otherwise, transition to the state indicated by next_op. */
if (next_op == -1)
{
currstatenum--;
if (currstatenum < 0)
{
return found_disent;
}
}
else if (next_op >= 0)
{
currstatenum++;
bitpos[currstatenum] = currbitnum - 1;
op_ptr[currstatenum] = next_op;
currtest[currstatenum] = 0;
}
}
}
/* Construct an ia64_opcode entry based on OPCODE, NAME and PLACE. */
static struct ia64_opcode *
make_ia64_opcode (ia64_insn opcode, const char *name, int place, int depind)
{
struct ia64_opcode *res =
(struct ia64_opcode *) xmalloc (sizeof (struct ia64_opcode));
res->name = xstrdup (name);
res->type = main_table[place].opcode_type;
res->num_outputs = main_table[place].num_outputs;
res->opcode = opcode;
res->mask = main_table[place].mask;
res->operands[0] = main_table[place].operands[0];
res->operands[1] = main_table[place].operands[1];
res->operands[2] = main_table[place].operands[2];
res->operands[3] = main_table[place].operands[3];
res->operands[4] = main_table[place].operands[4];
res->flags = main_table[place].flags;
res->ent_index = place;
res->dependencies = &op_dependencies[depind];
return res;
}
/* Determine the ia64_opcode entry for the opcode specified by INSN
and TYPE. If a valid entry is not found, return NULL. */
struct ia64_opcode *
ia64_dis_opcode (ia64_insn insn, enum ia64_insn_type type)
{
int disent = locate_opcode_ent (insn, type);
if (disent < 0)
{
return NULL;
}
else
{
unsigned int cb = ia64_dis_names[disent].completer_index;
static char name[128];
int place = ia64_dis_names[disent].insn_index;
int ci = main_table[place].completers;
ia64_insn tinsn = main_table[place].opcode;
strcpy (name, ia64_strings [main_table[place].name_index]);
while (cb)
{
if (cb & 1)
{
int cname = completer_table[ci].name_index;
tinsn = apply_completer (tinsn, ci);
if (ia64_strings[cname][0] != '\0')
{
strcat (name, ".");
strcat (name, ia64_strings[cname]);
}
if (cb != 1)
{
ci = completer_table[ci].subentries;
}
}
else
{
ci = completer_table[ci].alternative;
}
if (ci < 0)
{
abort ();
}
cb = cb >> 1;
}
if (tinsn != (insn & main_table[place].mask))
{
abort ();
}
return make_ia64_opcode (insn, name, place,
completer_table[ci].dependencies);
}
}
/* Search the main_opcode table starting from PLACE for an opcode that
matches NAME. Return NULL if one is not found. */
static struct ia64_opcode *
ia64_find_matching_opcode (const char *name, short place)
{
char op[129];
const char *suffix;
short name_index;
if (strlen (name) > 128)
{
return NULL;
}
suffix = name;
get_opc_prefix (&suffix, op);
name_index = find_string_ent (op);
if (name_index < 0)
{
return NULL;
}
while (main_table[place].name_index == name_index)
{
const char *curr_suffix = suffix;
ia64_insn curr_insn = main_table[place].opcode;
short completer = -1;
do {
if (suffix[0] == '\0')
{
completer = find_completer (place, completer, suffix);
}
else
{
get_opc_prefix (&curr_suffix, op);
completer = find_completer (place, completer, op);
}
if (completer != -1)
{
curr_insn = apply_completer (curr_insn, completer);
}
} while (completer != -1 && curr_suffix[0] != '\0');
if (completer != -1 && curr_suffix[0] == '\0'
&& completer_table[completer].terminal_completer)
{
int depind = completer_table[completer].dependencies;
return make_ia64_opcode (curr_insn, name, place, depind);
}
else
{
place++;
}
}
return NULL;
}
/* Find the next opcode after PREV_ENT that matches PREV_ENT, or return NULL
if one does not exist.
It is the caller's responsibility to invoke ia64_free_opcode () to
release any resources used by the returned entry. */
struct ia64_opcode *
ia64_find_next_opcode (struct ia64_opcode *prev_ent)
{
return ia64_find_matching_opcode (prev_ent->name,
prev_ent->ent_index + 1);
}
/* Find the first opcode that matches NAME, or return NULL if it does
not exist.
It is the caller's responsibility to invoke ia64_free_opcode () to
release any resources used by the returned entry. */
struct ia64_opcode *
ia64_find_opcode (const char *name)
{
char op[129];
const char *suffix;
short place;
short name_index;
if (strlen (name) > 128)
{
return NULL;
}
suffix = name;
get_opc_prefix (&suffix, op);
name_index = find_string_ent (op);
if (name_index < 0)
{
return NULL;
}
place = find_main_ent (name_index);
if (place < 0)
{
return NULL;
}
return ia64_find_matching_opcode (name, place);
}
/* Free any resources used by ENT. */
void
ia64_free_opcode (struct ia64_opcode *ent)
{
free ((void *)ent->name);
free (ent);
}
const struct ia64_dependency *
ia64_find_dependency (int dep_index)
{
dep_index = DEP(dep_index);
if (dep_index < 0
|| dep_index >= (int) ARRAY_SIZE (dependencies))
return NULL;
return &dependencies[dep_index];
}