mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-02 18:53:22 +00:00
1635 lines
47 KiB
C
1635 lines
47 KiB
C
/* CFG cleanup for trees.
|
|
Copyright (C) 2001-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "diagnostic-core.h"
|
|
#include "fold-const.h"
|
|
#include "cfganal.h"
|
|
#include "cfgcleanup.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-dfa.h"
|
|
#include "tree-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "gimple-match.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "cgraph.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-cfgcleanup.h"
|
|
|
|
|
|
/* The set of blocks in that at least one of the following changes happened:
|
|
-- the statement at the end of the block was changed
|
|
-- the block was newly created
|
|
-- the set of the predecessors of the block changed
|
|
-- the set of the successors of the block changed
|
|
??? Maybe we could track these changes separately, since they determine
|
|
what cleanups it makes sense to try on the block. */
|
|
bitmap cfgcleanup_altered_bbs;
|
|
|
|
/* Remove any fallthru edge from EV. Return true if an edge was removed. */
|
|
|
|
static bool
|
|
remove_fallthru_edge (vec<edge, va_gc> *ev)
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
FOR_EACH_EDGE (e, ei, ev)
|
|
if ((e->flags & EDGE_FALLTHRU) != 0)
|
|
{
|
|
if (e->flags & EDGE_COMPLEX)
|
|
e->flags &= ~EDGE_FALLTHRU;
|
|
else
|
|
remove_edge_and_dominated_blocks (e);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Convert a SWTCH with single non-default case to gcond and replace it
|
|
at GSI. */
|
|
|
|
static bool
|
|
convert_single_case_switch (gswitch *swtch, gimple_stmt_iterator &gsi)
|
|
{
|
|
if (gimple_switch_num_labels (swtch) != 2)
|
|
return false;
|
|
|
|
tree index = gimple_switch_index (swtch);
|
|
tree label = gimple_switch_label (swtch, 1);
|
|
tree low = CASE_LOW (label);
|
|
tree high = CASE_HIGH (label);
|
|
|
|
basic_block default_bb = gimple_switch_default_bb (cfun, swtch);
|
|
basic_block case_bb = label_to_block (cfun, CASE_LABEL (label));
|
|
|
|
basic_block bb = gimple_bb (swtch);
|
|
gcond *cond;
|
|
|
|
/* Replace switch statement with condition statement. */
|
|
if (high)
|
|
{
|
|
tree lhs, rhs;
|
|
generate_range_test (bb, index, low, high, &lhs, &rhs);
|
|
cond = gimple_build_cond (LE_EXPR, lhs, rhs, NULL_TREE, NULL_TREE);
|
|
}
|
|
else
|
|
cond = gimple_build_cond (EQ_EXPR, index,
|
|
fold_convert (TREE_TYPE (index), low),
|
|
NULL_TREE, NULL_TREE);
|
|
|
|
gsi_replace (&gsi, cond, true);
|
|
|
|
/* Update edges. */
|
|
edge case_edge = find_edge (bb, case_bb);
|
|
edge default_edge = find_edge (bb, default_bb);
|
|
|
|
case_edge->flags |= EDGE_TRUE_VALUE;
|
|
default_edge->flags |= EDGE_FALSE_VALUE;
|
|
return true;
|
|
}
|
|
|
|
/* Disconnect an unreachable block in the control expression starting
|
|
at block BB. */
|
|
|
|
static bool
|
|
cleanup_control_expr_graph (basic_block bb, gimple_stmt_iterator gsi)
|
|
{
|
|
edge taken_edge;
|
|
bool retval = false;
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
if (!single_succ_p (bb))
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool warned;
|
|
tree val = NULL_TREE;
|
|
|
|
/* Try to convert a switch with just a single non-default case to
|
|
GIMPLE condition. */
|
|
if (gimple_code (stmt) == GIMPLE_SWITCH
|
|
&& convert_single_case_switch (as_a<gswitch *> (stmt), gsi))
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
fold_defer_overflow_warnings ();
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_COND:
|
|
{
|
|
gimple_match_op res_op;
|
|
if (gimple_simplify (stmt, &res_op, NULL, no_follow_ssa_edges,
|
|
no_follow_ssa_edges)
|
|
&& res_op.code == INTEGER_CST)
|
|
val = res_op.ops[0];
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_SWITCH:
|
|
val = gimple_switch_index (as_a <gswitch *> (stmt));
|
|
break;
|
|
|
|
default:
|
|
;
|
|
}
|
|
taken_edge = find_taken_edge (bb, val);
|
|
if (!taken_edge)
|
|
{
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
|
return false;
|
|
}
|
|
|
|
/* Remove all the edges except the one that is always executed. */
|
|
warned = false;
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
|
{
|
|
if (e != taken_edge)
|
|
{
|
|
if (!warned)
|
|
{
|
|
fold_undefer_overflow_warnings
|
|
(true, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
|
|
warned = true;
|
|
}
|
|
|
|
taken_edge->probability += e->probability;
|
|
remove_edge_and_dominated_blocks (e);
|
|
retval = true;
|
|
}
|
|
else
|
|
ei_next (&ei);
|
|
}
|
|
if (!warned)
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
|
}
|
|
else
|
|
taken_edge = single_succ_edge (bb);
|
|
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, bb->index);
|
|
gsi_remove (&gsi, true);
|
|
taken_edge->flags = EDGE_FALLTHRU;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Cleanup the GF_CALL_CTRL_ALTERING flag according to
|
|
to updated gimple_call_flags. */
|
|
|
|
static void
|
|
cleanup_call_ctrl_altering_flag (gimple *bb_end)
|
|
{
|
|
if (!is_gimple_call (bb_end)
|
|
|| !gimple_call_ctrl_altering_p (bb_end))
|
|
return;
|
|
|
|
int flags = gimple_call_flags (bb_end);
|
|
if (((flags & (ECF_CONST | ECF_PURE))
|
|
&& !(flags & ECF_LOOPING_CONST_OR_PURE))
|
|
|| (flags & ECF_LEAF))
|
|
gimple_call_set_ctrl_altering (bb_end, false);
|
|
}
|
|
|
|
/* Try to remove superfluous control structures in basic block BB. Returns
|
|
true if anything changes. */
|
|
|
|
static bool
|
|
cleanup_control_flow_bb (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
bool retval = false;
|
|
gimple *stmt;
|
|
|
|
/* If the last statement of the block could throw and now cannot,
|
|
we need to prune cfg. */
|
|
retval |= gimple_purge_dead_eh_edges (bb);
|
|
|
|
gsi = gsi_last_nondebug_bb (bb);
|
|
if (gsi_end_p (gsi))
|
|
return retval;
|
|
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
/* Try to cleanup ctrl altering flag for call which ends bb. */
|
|
cleanup_call_ctrl_altering_flag (stmt);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH)
|
|
{
|
|
gcc_checking_assert (gsi_stmt (gsi_last_bb (bb)) == stmt);
|
|
retval |= cleanup_control_expr_graph (bb, gsi);
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_GOTO
|
|
&& TREE_CODE (gimple_goto_dest (stmt)) == ADDR_EXPR
|
|
&& (TREE_CODE (TREE_OPERAND (gimple_goto_dest (stmt), 0))
|
|
== LABEL_DECL))
|
|
{
|
|
/* If we had a computed goto which has a compile-time determinable
|
|
destination, then we can eliminate the goto. */
|
|
edge e;
|
|
tree label;
|
|
edge_iterator ei;
|
|
basic_block target_block;
|
|
|
|
gcc_checking_assert (gsi_stmt (gsi_last_bb (bb)) == stmt);
|
|
/* First look at all the outgoing edges. Delete any outgoing
|
|
edges which do not go to the right block. For the one
|
|
edge which goes to the right block, fix up its flags. */
|
|
label = TREE_OPERAND (gimple_goto_dest (stmt), 0);
|
|
if (DECL_CONTEXT (label) != cfun->decl)
|
|
return retval;
|
|
target_block = label_to_block (cfun, label);
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
|
{
|
|
if (e->dest != target_block)
|
|
remove_edge_and_dominated_blocks (e);
|
|
else
|
|
{
|
|
/* Turn off the EDGE_ABNORMAL flag. */
|
|
e->flags &= ~EDGE_ABNORMAL;
|
|
|
|
/* And set EDGE_FALLTHRU. */
|
|
e->flags |= EDGE_FALLTHRU;
|
|
ei_next (&ei);
|
|
}
|
|
}
|
|
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, bb->index);
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, target_block->index);
|
|
|
|
/* Remove the GOTO_EXPR as it is not needed. The CFG has all the
|
|
relevant information we need. */
|
|
gsi_remove (&gsi, true);
|
|
retval = true;
|
|
}
|
|
|
|
/* Check for indirect calls that have been turned into
|
|
noreturn calls. */
|
|
else if (is_gimple_call (stmt)
|
|
&& gimple_call_noreturn_p (stmt))
|
|
{
|
|
/* If there are debug stmts after the noreturn call, remove them
|
|
now, they should be all unreachable anyway. */
|
|
for (gsi_next (&gsi); !gsi_end_p (gsi); )
|
|
gsi_remove (&gsi, true);
|
|
if (remove_fallthru_edge (bb->succs))
|
|
retval = true;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Return true if basic block BB does nothing except pass control
|
|
flow to another block and that we can safely insert a label at
|
|
the start of the successor block.
|
|
|
|
As a precondition, we require that BB be not equal to
|
|
the entry block. */
|
|
|
|
static bool
|
|
tree_forwarder_block_p (basic_block bb, bool phi_wanted)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
location_t locus;
|
|
|
|
/* BB must have a single outgoing edge. */
|
|
if (single_succ_p (bb) != 1
|
|
/* If PHI_WANTED is false, BB must not have any PHI nodes.
|
|
Otherwise, BB must have PHI nodes. */
|
|
|| gimple_seq_empty_p (phi_nodes (bb)) == phi_wanted
|
|
/* BB may not be a predecessor of the exit block. */
|
|
|| single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
|
/* Nor should this be an infinite loop. */
|
|
|| single_succ (bb) == bb
|
|
/* BB may not have an abnormal outgoing edge. */
|
|
|| (single_succ_edge (bb)->flags & EDGE_ABNORMAL))
|
|
return false;
|
|
|
|
gcc_checking_assert (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
locus = single_succ_edge (bb)->goto_locus;
|
|
|
|
/* There should not be an edge coming from entry, or an EH edge. */
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || (e->flags & EDGE_EH))
|
|
return false;
|
|
/* If goto_locus of any of the edges differs, prevent removing
|
|
the forwarder block when not optimizing. */
|
|
else if (!optimize
|
|
&& (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
|
|
|| LOCATION_LOCUS (locus) != UNKNOWN_LOCATION)
|
|
&& e->goto_locus != locus)
|
|
return false;
|
|
}
|
|
|
|
/* Now walk through the statements backward. We can ignore labels,
|
|
anything else means this is not a forwarder block. */
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_LABEL:
|
|
if (DECL_NONLOCAL (gimple_label_label (as_a <glabel *> (stmt))))
|
|
return false;
|
|
if (!optimize
|
|
&& (gimple_has_location (stmt)
|
|
|| LOCATION_LOCUS (locus) != UNKNOWN_LOCATION)
|
|
&& gimple_location (stmt) != locus)
|
|
return false;
|
|
break;
|
|
|
|
/* ??? For now, hope there's a corresponding debug
|
|
assignment at the destination. */
|
|
case GIMPLE_DEBUG:
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (current_loops)
|
|
{
|
|
basic_block dest;
|
|
/* Protect loop headers. */
|
|
if (bb_loop_header_p (bb))
|
|
return false;
|
|
|
|
dest = EDGE_SUCC (bb, 0)->dest;
|
|
/* Protect loop preheaders and latches if requested. */
|
|
if (dest->loop_father->header == dest)
|
|
{
|
|
if (bb->loop_father == dest->loop_father)
|
|
{
|
|
if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
|
|
return false;
|
|
/* If bb doesn't have a single predecessor we'd make this
|
|
loop have multiple latches. Don't do that if that
|
|
would in turn require disambiguating them. */
|
|
return (single_pred_p (bb)
|
|
|| loops_state_satisfies_p
|
|
(LOOPS_MAY_HAVE_MULTIPLE_LATCHES));
|
|
}
|
|
else if (bb->loop_father == loop_outer (dest->loop_father))
|
|
return !loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS);
|
|
/* Always preserve other edges into loop headers that are
|
|
not simple latches or preheaders. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* If all the PHI nodes in DEST have alternatives for E1 and E2 and
|
|
those alternatives are equal in each of the PHI nodes, then return
|
|
true, else return false. */
|
|
|
|
static bool
|
|
phi_alternatives_equal (basic_block dest, edge e1, edge e2)
|
|
{
|
|
int n1 = e1->dest_idx;
|
|
int n2 = e2->dest_idx;
|
|
gphi_iterator gsi;
|
|
|
|
for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree val1 = gimple_phi_arg_def (phi, n1);
|
|
tree val2 = gimple_phi_arg_def (phi, n2);
|
|
|
|
gcc_assert (val1 != NULL_TREE);
|
|
gcc_assert (val2 != NULL_TREE);
|
|
|
|
if (!operand_equal_for_phi_arg_p (val1, val2))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Move debug stmts from the forwarder block SRC to DEST. */
|
|
|
|
static void
|
|
move_debug_stmts_from_forwarder (basic_block src, basic_block dest,
|
|
bool dest_single_pred_p)
|
|
{
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
|
return;
|
|
|
|
gimple_stmt_iterator gsi_to = gsi_after_labels (dest);
|
|
for (gimple_stmt_iterator gsi = gsi_after_labels (src); !gsi_end_p (gsi);)
|
|
{
|
|
gimple *debug = gsi_stmt (gsi);
|
|
gcc_assert (is_gimple_debug (debug));
|
|
/* Move debug binds anyway, but not anything else like begin-stmt
|
|
markers unless they are always valid at the destination. */
|
|
if (dest_single_pred_p
|
|
|| gimple_debug_bind_p (debug))
|
|
{
|
|
gsi_move_before (&gsi, &gsi_to);
|
|
/* Reset debug-binds that are not always valid at the destination.
|
|
Simply dropping them can cause earlier values to become live,
|
|
generating wrong debug information.
|
|
??? There are several things we could improve here. For
|
|
one we might be able to move stmts to the predecessor.
|
|
For anther, if the debug stmt is immediately followed by a
|
|
(debug) definition in the destination (on a post-dominated path?)
|
|
we can elide it without any bad effects. */
|
|
if (!dest_single_pred_p)
|
|
{
|
|
gimple_debug_bind_reset_value (debug);
|
|
update_stmt (debug);
|
|
}
|
|
}
|
|
else
|
|
gsi_next (&gsi);
|
|
}
|
|
}
|
|
|
|
/* Removes forwarder block BB. Returns false if this failed. */
|
|
|
|
static bool
|
|
remove_forwarder_block (basic_block bb)
|
|
{
|
|
edge succ = single_succ_edge (bb), e, s;
|
|
basic_block dest = succ->dest;
|
|
gimple *stmt;
|
|
edge_iterator ei;
|
|
gimple_stmt_iterator gsi, gsi_to;
|
|
|
|
/* We check for infinite loops already in tree_forwarder_block_p.
|
|
However it may happen that the infinite loop is created
|
|
afterwards due to removal of forwarders. */
|
|
if (dest == bb)
|
|
return false;
|
|
|
|
/* If the destination block consists of a nonlocal label or is a
|
|
EH landing pad, do not merge it. */
|
|
stmt = first_stmt (dest);
|
|
if (stmt)
|
|
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
|
|
if (DECL_NONLOCAL (gimple_label_label (label_stmt))
|
|
|| EH_LANDING_PAD_NR (gimple_label_label (label_stmt)) != 0)
|
|
return false;
|
|
|
|
/* If there is an abnormal edge to basic block BB, but not into
|
|
dest, problems might occur during removal of the phi node at out
|
|
of ssa due to overlapping live ranges of registers.
|
|
|
|
If there is an abnormal edge in DEST, the problems would occur
|
|
anyway since cleanup_dead_labels would then merge the labels for
|
|
two different eh regions, and rest of exception handling code
|
|
does not like it.
|
|
|
|
So if there is an abnormal edge to BB, proceed only if there is
|
|
no abnormal edge to DEST and there are no phi nodes in DEST. */
|
|
if (bb_has_abnormal_pred (bb)
|
|
&& (bb_has_abnormal_pred (dest)
|
|
|| !gimple_seq_empty_p (phi_nodes (dest))))
|
|
return false;
|
|
|
|
/* If there are phi nodes in DEST, and some of the blocks that are
|
|
predecessors of BB are also predecessors of DEST, check that the
|
|
phi node arguments match. */
|
|
if (!gimple_seq_empty_p (phi_nodes (dest)))
|
|
{
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
s = find_edge (e->src, dest);
|
|
if (!s)
|
|
continue;
|
|
|
|
if (!phi_alternatives_equal (dest, succ, s))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
basic_block pred = NULL;
|
|
if (single_pred_p (bb))
|
|
pred = single_pred (bb);
|
|
bool dest_single_pred_p = single_pred_p (dest);
|
|
|
|
/* Redirect the edges. */
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
|
{
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
|
|
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
{
|
|
/* If there is an abnormal edge, redirect it anyway, and
|
|
move the labels to the new block to make it legal. */
|
|
s = redirect_edge_succ_nodup (e, dest);
|
|
}
|
|
else
|
|
s = redirect_edge_and_branch (e, dest);
|
|
|
|
if (s == e)
|
|
{
|
|
/* Create arguments for the phi nodes, since the edge was not
|
|
here before. */
|
|
for (gphi_iterator psi = gsi_start_phis (dest);
|
|
!gsi_end_p (psi);
|
|
gsi_next (&psi))
|
|
{
|
|
gphi *phi = psi.phi ();
|
|
location_t l = gimple_phi_arg_location_from_edge (phi, succ);
|
|
tree def = gimple_phi_arg_def (phi, succ->dest_idx);
|
|
add_phi_arg (phi, unshare_expr (def), s, l);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Move nonlocal labels and computed goto targets as well as user
|
|
defined labels and labels with an EH landing pad number to the
|
|
new block, so that the redirection of the abnormal edges works,
|
|
jump targets end up in a sane place and debug information for
|
|
labels is retained. */
|
|
gsi_to = gsi_start_bb (dest);
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
break;
|
|
|
|
/* Forwarder blocks can only contain labels and debug stmts, and
|
|
labels must come first, so if we get to this point, we know
|
|
we're looking at a label. */
|
|
tree decl = gimple_label_label (as_a <glabel *> (stmt));
|
|
if (EH_LANDING_PAD_NR (decl) != 0
|
|
|| DECL_NONLOCAL (decl)
|
|
|| FORCED_LABEL (decl)
|
|
|| !DECL_ARTIFICIAL (decl))
|
|
gsi_move_before (&gsi, &gsi_to);
|
|
else
|
|
gsi_next (&gsi);
|
|
}
|
|
|
|
/* Move debug statements. Reset them if the destination does not
|
|
have a single predecessor. */
|
|
move_debug_stmts_from_forwarder (bb, dest, dest_single_pred_p);
|
|
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, dest->index);
|
|
|
|
/* Update the dominators. */
|
|
if (dom_info_available_p (CDI_DOMINATORS))
|
|
{
|
|
basic_block dom, dombb, domdest;
|
|
|
|
dombb = get_immediate_dominator (CDI_DOMINATORS, bb);
|
|
domdest = get_immediate_dominator (CDI_DOMINATORS, dest);
|
|
if (domdest == bb)
|
|
{
|
|
/* Shortcut to avoid calling (relatively expensive)
|
|
nearest_common_dominator unless necessary. */
|
|
dom = dombb;
|
|
}
|
|
else
|
|
dom = nearest_common_dominator (CDI_DOMINATORS, domdest, dombb);
|
|
|
|
set_immediate_dominator (CDI_DOMINATORS, dest, dom);
|
|
}
|
|
|
|
/* Adjust latch infomation of BB's parent loop as otherwise
|
|
the cfg hook has a hard time not to kill the loop. */
|
|
if (current_loops && bb->loop_father->latch == bb)
|
|
bb->loop_father->latch = pred;
|
|
|
|
/* And kill the forwarder block. */
|
|
delete_basic_block (bb);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* STMT is a call that has been discovered noreturn. Split the
|
|
block to prepare fixing up the CFG and remove LHS.
|
|
Return true if cleanup-cfg needs to run. */
|
|
|
|
bool
|
|
fixup_noreturn_call (gimple *stmt)
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
bool changed = false;
|
|
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
|
|
return false;
|
|
|
|
/* First split basic block if stmt is not last. */
|
|
if (stmt != gsi_stmt (gsi_last_bb (bb)))
|
|
{
|
|
if (stmt == gsi_stmt (gsi_last_nondebug_bb (bb)))
|
|
{
|
|
/* Don't split if there are only debug stmts
|
|
after stmt, that can result in -fcompare-debug
|
|
failures. Remove the debug stmts instead,
|
|
they should be all unreachable anyway. */
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
for (gsi_next (&gsi); !gsi_end_p (gsi); )
|
|
gsi_remove (&gsi, true);
|
|
}
|
|
else
|
|
{
|
|
split_block (bb, stmt);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
/* If there is an LHS, remove it, but only if its type has fixed size.
|
|
The LHS will need to be recreated during RTL expansion and creating
|
|
temporaries of variable-sized types is not supported. Also don't
|
|
do this with TREE_ADDRESSABLE types, as assign_temp will abort.
|
|
Drop LHS regardless of TREE_ADDRESSABLE, if the function call
|
|
has been changed into a call that does not return a value, like
|
|
__builtin_unreachable or __cxa_pure_virtual. */
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs
|
|
&& (should_remove_lhs_p (lhs)
|
|
|| VOID_TYPE_P (TREE_TYPE (gimple_call_fntype (stmt)))))
|
|
{
|
|
gimple_call_set_lhs (stmt, NULL_TREE);
|
|
|
|
/* We need to fix up the SSA name to avoid checking errors. */
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree new_var = create_tmp_reg (TREE_TYPE (lhs));
|
|
SET_SSA_NAME_VAR_OR_IDENTIFIER (lhs, new_var);
|
|
SSA_NAME_DEF_STMT (lhs) = gimple_build_nop ();
|
|
set_ssa_default_def (cfun, new_var, lhs);
|
|
}
|
|
|
|
update_stmt (stmt);
|
|
}
|
|
|
|
/* Mark the call as altering control flow. */
|
|
if (!gimple_call_ctrl_altering_p (stmt))
|
|
{
|
|
gimple_call_set_ctrl_altering (stmt, true);
|
|
changed = true;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Return true if we want to merge BB1 and BB2 into a single block. */
|
|
|
|
static bool
|
|
want_merge_blocks_p (basic_block bb1, basic_block bb2)
|
|
{
|
|
if (!can_merge_blocks_p (bb1, bb2))
|
|
return false;
|
|
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb1);
|
|
if (gsi_end_p (gsi) || !stmt_can_terminate_bb_p (gsi_stmt (gsi)))
|
|
return true;
|
|
return bb1->count.ok_for_merging (bb2->count);
|
|
}
|
|
|
|
|
|
/* Tries to cleanup cfg in basic block BB by merging blocks. Returns
|
|
true if anything changes. */
|
|
|
|
static bool
|
|
cleanup_tree_cfg_bb (basic_block bb)
|
|
{
|
|
if (tree_forwarder_block_p (bb, false)
|
|
&& remove_forwarder_block (bb))
|
|
return true;
|
|
|
|
/* If there is a merge opportunity with the predecessor
|
|
do nothing now but wait until we process the predecessor.
|
|
This happens when we visit BBs in a non-optimal order and
|
|
avoids quadratic behavior with adjusting stmts BB pointer. */
|
|
if (single_pred_p (bb)
|
|
&& want_merge_blocks_p (single_pred (bb), bb))
|
|
/* But make sure we _do_ visit it. When we remove unreachable paths
|
|
ending in a backedge we fail to mark the destinations predecessors
|
|
as changed. */
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, single_pred (bb)->index);
|
|
|
|
/* Merging the blocks may create new opportunities for folding
|
|
conditional branches (due to the elimination of single-valued PHI
|
|
nodes). */
|
|
else if (single_succ_p (bb)
|
|
&& want_merge_blocks_p (bb, single_succ (bb)))
|
|
{
|
|
merge_blocks (bb, single_succ (bb));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if E is an EDGE_ABNORMAL edge for returns_twice calls,
|
|
i.e. one going from .ABNORMAL_DISPATCHER to basic block which doesn't
|
|
start with a forced or nonlocal label. Calls which return twice can return
|
|
the second time only if they are called normally the first time, so basic
|
|
blocks which can be only entered through these abnormal edges but not
|
|
normally are effectively unreachable as well. Additionally ignore
|
|
__builtin_setjmp_receiver starting blocks, which have one FORCED_LABEL
|
|
and which are always only reachable through EDGE_ABNORMAL edge. They are
|
|
handled in cleanup_control_flow_pre. */
|
|
|
|
static bool
|
|
maybe_dead_abnormal_edge_p (edge e)
|
|
{
|
|
if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) != EDGE_ABNORMAL)
|
|
return false;
|
|
|
|
gimple_stmt_iterator gsi = gsi_start_nondebug_after_labels_bb (e->src);
|
|
gimple *g = gsi_stmt (gsi);
|
|
if (!g || !gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
|
|
return false;
|
|
|
|
tree target = NULL_TREE;
|
|
for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)))
|
|
{
|
|
tree this_target = gimple_label_label (label_stmt);
|
|
if (DECL_NONLOCAL (this_target))
|
|
return false;
|
|
if (FORCED_LABEL (this_target))
|
|
{
|
|
if (target)
|
|
return false;
|
|
target = this_target;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
|
|
if (target)
|
|
{
|
|
/* If there was a single FORCED_LABEL, check for
|
|
__builtin_setjmp_receiver with address of that label. */
|
|
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
|
|
gsi_next_nondebug (&gsi);
|
|
if (gsi_end_p (gsi))
|
|
return false;
|
|
if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_SETJMP_RECEIVER))
|
|
return false;
|
|
|
|
tree arg = gimple_call_arg (gsi_stmt (gsi), 0);
|
|
if (TREE_CODE (arg) != ADDR_EXPR || TREE_OPERAND (arg, 0) != target)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If BB is a basic block ending with __builtin_setjmp_setup, return edge
|
|
from .ABNORMAL_DISPATCHER basic block to corresponding
|
|
__builtin_setjmp_receiver basic block, otherwise return NULL. */
|
|
static edge
|
|
builtin_setjmp_setup_bb (basic_block bb)
|
|
{
|
|
if (EDGE_COUNT (bb->succs) != 2
|
|
|| ((EDGE_SUCC (bb, 0)->flags
|
|
& (EDGE_ABNORMAL | EDGE_EH)) != EDGE_ABNORMAL
|
|
&& (EDGE_SUCC (bb, 1)->flags
|
|
& (EDGE_ABNORMAL | EDGE_EH)) != EDGE_ABNORMAL))
|
|
return NULL;
|
|
|
|
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
|
|
if (gsi_end_p (gsi)
|
|
|| !gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_SETJMP_SETUP))
|
|
return NULL;
|
|
|
|
tree arg = gimple_call_arg (gsi_stmt (gsi), 1);
|
|
if (TREE_CODE (arg) != ADDR_EXPR
|
|
|| TREE_CODE (TREE_OPERAND (arg, 0)) != LABEL_DECL)
|
|
return NULL;
|
|
|
|
basic_block recv_bb = label_to_block (cfun, TREE_OPERAND (arg, 0));
|
|
if (EDGE_COUNT (recv_bb->preds) != 1
|
|
|| (EDGE_PRED (recv_bb, 0)->flags
|
|
& (EDGE_ABNORMAL | EDGE_EH)) != EDGE_ABNORMAL
|
|
|| (EDGE_SUCC (bb, 0)->dest != EDGE_PRED (recv_bb, 0)->src
|
|
&& EDGE_SUCC (bb, 1)->dest != EDGE_PRED (recv_bb, 0)->src))
|
|
return NULL;
|
|
|
|
/* EDGE_PRED (recv_bb, 0)->src should be the .ABNORMAL_DISPATCHER bb. */
|
|
return EDGE_PRED (recv_bb, 0);
|
|
}
|
|
|
|
/* Do cleanup_control_flow_bb in PRE order. */
|
|
|
|
static bool
|
|
cleanup_control_flow_pre ()
|
|
{
|
|
bool retval = false;
|
|
|
|
/* We want remove_edge_and_dominated_blocks to only remove edges,
|
|
not dominated blocks which it does when dom info isn't available.
|
|
Pretend so. */
|
|
dom_state saved_state = dom_info_state (CDI_DOMINATORS);
|
|
set_dom_info_availability (CDI_DOMINATORS, DOM_NONE);
|
|
|
|
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 2);
|
|
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
|
bitmap_clear (visited);
|
|
|
|
vec<edge, va_gc> *setjmp_vec = NULL;
|
|
auto_vec<basic_block, 4> abnormal_dispatchers;
|
|
|
|
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
|
|
|
|
while (! stack.is_empty ())
|
|
{
|
|
/* Look at the edge on the top of the stack. */
|
|
edge_iterator ei = stack.last ();
|
|
basic_block dest = ei_edge (ei)->dest;
|
|
|
|
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
|
&& !bitmap_bit_p (visited, dest->index)
|
|
&& (ei_container (ei) == setjmp_vec
|
|
|| !maybe_dead_abnormal_edge_p (ei_edge (ei))))
|
|
{
|
|
bitmap_set_bit (visited, dest->index);
|
|
/* We only possibly remove edges from DEST here, leaving
|
|
possibly unreachable code in the IL. */
|
|
retval |= cleanup_control_flow_bb (dest);
|
|
|
|
/* Check for __builtin_setjmp_setup. Edges from .ABNORMAL_DISPATCH
|
|
to __builtin_setjmp_receiver will be normally ignored by
|
|
maybe_dead_abnormal_edge_p. If DEST is a visited
|
|
__builtin_setjmp_setup, queue edge from .ABNORMAL_DISPATCH
|
|
to __builtin_setjmp_receiver, so that it will be visited too. */
|
|
if (edge e = builtin_setjmp_setup_bb (dest))
|
|
{
|
|
vec_safe_push (setjmp_vec, e);
|
|
if (vec_safe_length (setjmp_vec) == 1)
|
|
stack.quick_push (ei_start (setjmp_vec));
|
|
}
|
|
|
|
if ((ei_edge (ei)->flags
|
|
& (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
|
|
{
|
|
gimple_stmt_iterator gsi
|
|
= gsi_start_nondebug_after_labels_bb (dest);
|
|
gimple *g = gsi_stmt (gsi);
|
|
if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
|
|
abnormal_dispatchers.safe_push (dest);
|
|
}
|
|
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
|
stack.quick_push (ei_start (dest->succs));
|
|
}
|
|
else
|
|
{
|
|
if (!ei_one_before_end_p (ei))
|
|
ei_next (&stack.last ());
|
|
else
|
|
{
|
|
if (ei_container (ei) == setjmp_vec)
|
|
vec_safe_truncate (setjmp_vec, 0);
|
|
stack.pop ();
|
|
}
|
|
}
|
|
}
|
|
|
|
vec_free (setjmp_vec);
|
|
|
|
/* If we've marked .ABNORMAL_DISPATCHER basic block(s) as visited
|
|
above, but haven't marked any of their successors as visited,
|
|
unmark them now, so that they can be removed as useless. */
|
|
basic_block dispatcher_bb;
|
|
unsigned int k;
|
|
FOR_EACH_VEC_ELT (abnormal_dispatchers, k, dispatcher_bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, dispatcher_bb->succs)
|
|
if (bitmap_bit_p (visited, e->dest->index))
|
|
break;
|
|
if (e == NULL)
|
|
bitmap_clear_bit (visited, dispatcher_bb->index);
|
|
}
|
|
|
|
set_dom_info_availability (CDI_DOMINATORS, saved_state);
|
|
|
|
/* We are deleting BBs in non-reverse dominator order, make sure
|
|
insert_debug_temps_for_defs is prepared for that. */
|
|
if (retval)
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Remove all now (and previously) unreachable blocks. */
|
|
for (int i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); ++i)
|
|
{
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
if (bb && !bitmap_bit_p (visited, bb->index))
|
|
{
|
|
if (!retval)
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
delete_basic_block (bb);
|
|
retval = true;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static bool
|
|
mfb_keep_latches (edge e)
|
|
{
|
|
return !((dom_info_available_p (CDI_DOMINATORS)
|
|
&& dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
|
|
|| (e->flags & EDGE_DFS_BACK));
|
|
}
|
|
|
|
/* Remove unreachable blocks and other miscellaneous clean up work.
|
|
Return true if the flowgraph was modified, false otherwise. */
|
|
|
|
static bool
|
|
cleanup_tree_cfg_noloop (unsigned ssa_update_flags)
|
|
{
|
|
timevar_push (TV_TREE_CLEANUP_CFG);
|
|
|
|
/* Ensure that we have single entries into loop headers. Otherwise
|
|
if one of the entries is becoming a latch due to CFG cleanup
|
|
(from formerly being part of an irreducible region) then we mess
|
|
up loop fixup and associate the old loop with a different region
|
|
which makes niter upper bounds invalid. See for example PR80549.
|
|
This needs to be done before we remove trivially dead edges as
|
|
we need to capture the dominance state before the pending transform. */
|
|
if (current_loops)
|
|
{
|
|
/* This needs backedges or dominators. */
|
|
if (!dom_info_available_p (CDI_DOMINATORS))
|
|
mark_dfs_back_edges ();
|
|
|
|
loop_p loop;
|
|
unsigned i;
|
|
FOR_EACH_VEC_ELT (*get_loops (cfun), i, loop)
|
|
if (loop && loop->header)
|
|
{
|
|
basic_block bb = loop->header;
|
|
edge_iterator ei;
|
|
edge e;
|
|
bool found_latch = false;
|
|
bool any_abnormal = false;
|
|
unsigned n = 0;
|
|
/* We are only interested in preserving existing loops, but
|
|
we need to check whether they are still real and of course
|
|
if we need to add a preheader at all. */
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
{
|
|
any_abnormal = true;
|
|
break;
|
|
}
|
|
if ((dom_info_available_p (CDI_DOMINATORS)
|
|
&& dominated_by_p (CDI_DOMINATORS, e->src, bb))
|
|
|| (e->flags & EDGE_DFS_BACK))
|
|
{
|
|
found_latch = true;
|
|
continue;
|
|
}
|
|
n++;
|
|
}
|
|
/* If we have more than one entry to the loop header
|
|
create a forwarder. */
|
|
if (found_latch && ! any_abnormal && n > 1)
|
|
{
|
|
edge fallthru = make_forwarder_block (bb, mfb_keep_latches,
|
|
NULL);
|
|
loop->header = fallthru->dest;
|
|
if (! loops_state_satisfies_p (LOOPS_NEED_FIXUP))
|
|
{
|
|
/* The loop updating from the CFG hook is incomplete
|
|
when we have multiple latches, fixup manually. */
|
|
remove_bb_from_loops (fallthru->src);
|
|
loop_p cloop = loop;
|
|
FOR_EACH_EDGE (e, ei, fallthru->src->preds)
|
|
cloop = find_common_loop (cloop, e->src->loop_father);
|
|
add_bb_to_loop (fallthru->src, cloop);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Prepare the worklists of altered blocks. */
|
|
cfgcleanup_altered_bbs = BITMAP_ALLOC (NULL);
|
|
|
|
/* Start by iterating over all basic blocks in PRE order looking for
|
|
edge removal opportunities. Do this first because incoming SSA form
|
|
may be invalid and we want to avoid performing SSA related tasks such
|
|
as propgating out a PHI node during BB merging in that state. This
|
|
also gets rid of unreachable blocks. */
|
|
bool changed = cleanup_control_flow_pre ();
|
|
|
|
/* After doing the above SSA form should be valid (or an update SSA
|
|
should be required). */
|
|
if (ssa_update_flags)
|
|
update_ssa (ssa_update_flags);
|
|
|
|
/* Compute dominator info which we need for the iterative process below. */
|
|
if (!dom_info_available_p (CDI_DOMINATORS))
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
else
|
|
checking_verify_dominators (CDI_DOMINATORS);
|
|
|
|
/* During forwarder block cleanup, we may redirect edges out of
|
|
SWITCH_EXPRs, which can get expensive. So we want to enable
|
|
recording of edge to CASE_LABEL_EXPR. */
|
|
start_recording_case_labels ();
|
|
|
|
/* Continue by iterating over all basic blocks looking for BB merging
|
|
opportunities. We cannot use FOR_EACH_BB_FN for the BB iteration
|
|
since the basic blocks may get removed. */
|
|
unsigned n = last_basic_block_for_fn (cfun);
|
|
for (unsigned i = NUM_FIXED_BLOCKS; i < n; i++)
|
|
{
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
if (bb)
|
|
changed |= cleanup_tree_cfg_bb (bb);
|
|
}
|
|
|
|
/* Now process the altered blocks, as long as any are available. */
|
|
while (!bitmap_empty_p (cfgcleanup_altered_bbs))
|
|
{
|
|
unsigned i = bitmap_first_set_bit (cfgcleanup_altered_bbs);
|
|
bitmap_clear_bit (cfgcleanup_altered_bbs, i);
|
|
if (i < NUM_FIXED_BLOCKS)
|
|
continue;
|
|
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
if (!bb)
|
|
continue;
|
|
|
|
/* BB merging done by cleanup_tree_cfg_bb can end up propagating
|
|
out single-argument PHIs which in turn can expose
|
|
cleanup_control_flow_bb opportunities so we have to repeat
|
|
that here. */
|
|
changed |= cleanup_control_flow_bb (bb);
|
|
changed |= cleanup_tree_cfg_bb (bb);
|
|
}
|
|
|
|
end_recording_case_labels ();
|
|
BITMAP_FREE (cfgcleanup_altered_bbs);
|
|
|
|
gcc_assert (dom_info_available_p (CDI_DOMINATORS));
|
|
|
|
/* Do not renumber blocks if the SCEV cache is active, it is indexed by
|
|
basic-block numbers. */
|
|
if (! scev_initialized_p ())
|
|
compact_blocks ();
|
|
|
|
checking_verify_flow_info ();
|
|
|
|
timevar_pop (TV_TREE_CLEANUP_CFG);
|
|
|
|
if (changed && current_loops)
|
|
{
|
|
/* Removing edges and/or blocks may make recorded bounds refer
|
|
to stale GIMPLE stmts now, so clear them. */
|
|
free_numbers_of_iterations_estimates (cfun);
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Repairs loop structures. */
|
|
|
|
static void
|
|
repair_loop_structures (void)
|
|
{
|
|
bitmap changed_bbs;
|
|
unsigned n_new_loops;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
timevar_push (TV_REPAIR_LOOPS);
|
|
changed_bbs = BITMAP_ALLOC (NULL);
|
|
n_new_loops = fix_loop_structure (changed_bbs);
|
|
|
|
/* This usually does nothing. But sometimes parts of cfg that originally
|
|
were inside a loop get out of it due to edge removal (since they
|
|
become unreachable by back edges from latch). Also a former
|
|
irreducible loop can become reducible - in this case force a full
|
|
rewrite into loop-closed SSA form. */
|
|
if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
|
|
rewrite_into_loop_closed_ssa (n_new_loops ? NULL : changed_bbs,
|
|
TODO_update_ssa);
|
|
|
|
BITMAP_FREE (changed_bbs);
|
|
|
|
checking_verify_loop_structure ();
|
|
scev_reset ();
|
|
|
|
timevar_pop (TV_REPAIR_LOOPS);
|
|
}
|
|
|
|
/* Cleanup cfg and repair loop structures. */
|
|
|
|
bool
|
|
cleanup_tree_cfg (unsigned ssa_update_flags)
|
|
{
|
|
bool changed = cleanup_tree_cfg_noloop (ssa_update_flags);
|
|
|
|
if (current_loops != NULL
|
|
&& loops_state_satisfies_p (LOOPS_NEED_FIXUP))
|
|
repair_loop_structures ();
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Tries to merge the PHI nodes at BB into those at BB's sole successor.
|
|
Returns true if successful. */
|
|
|
|
static bool
|
|
remove_forwarder_block_with_phi (basic_block bb)
|
|
{
|
|
edge succ = single_succ_edge (bb);
|
|
basic_block dest = succ->dest;
|
|
gimple *label;
|
|
basic_block dombb, domdest, dom;
|
|
|
|
/* We check for infinite loops already in tree_forwarder_block_p.
|
|
However it may happen that the infinite loop is created
|
|
afterwards due to removal of forwarders. */
|
|
if (dest == bb)
|
|
return false;
|
|
|
|
/* Removal of forwarders may expose new natural loops and thus
|
|
a block may turn into a loop header. */
|
|
if (current_loops && bb_loop_header_p (bb))
|
|
return false;
|
|
|
|
/* If the destination block consists of a nonlocal label, do not
|
|
merge it. */
|
|
label = first_stmt (dest);
|
|
if (label)
|
|
if (glabel *label_stmt = dyn_cast <glabel *> (label))
|
|
if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
|
|
return false;
|
|
|
|
/* Record BB's single pred in case we need to update the father
|
|
loop's latch information later. */
|
|
basic_block pred = NULL;
|
|
if (single_pred_p (bb))
|
|
pred = single_pred (bb);
|
|
bool dest_single_pred_p = single_pred_p (dest);
|
|
|
|
/* Redirect each incoming edge to BB to DEST. */
|
|
while (EDGE_COUNT (bb->preds) > 0)
|
|
{
|
|
edge e = EDGE_PRED (bb, 0), s;
|
|
gphi_iterator gsi;
|
|
|
|
s = find_edge (e->src, dest);
|
|
if (s)
|
|
{
|
|
/* We already have an edge S from E->src to DEST. If S and
|
|
E->dest's sole successor edge have the same PHI arguments
|
|
at DEST, redirect S to DEST. */
|
|
if (phi_alternatives_equal (dest, s, succ))
|
|
{
|
|
e = redirect_edge_and_branch (e, dest);
|
|
redirect_edge_var_map_clear (e);
|
|
continue;
|
|
}
|
|
|
|
/* PHI arguments are different. Create a forwarder block by
|
|
splitting E so that we can merge PHI arguments on E to
|
|
DEST. */
|
|
e = single_succ_edge (split_edge (e));
|
|
}
|
|
else
|
|
{
|
|
/* If we merge the forwarder into a loop header verify if we
|
|
are creating another loop latch edge. If so, reset
|
|
number of iteration information of the loop. */
|
|
if (dest->loop_father->header == dest
|
|
&& dominated_by_p (CDI_DOMINATORS, e->src, dest))
|
|
{
|
|
dest->loop_father->any_upper_bound = false;
|
|
dest->loop_father->any_likely_upper_bound = false;
|
|
free_numbers_of_iterations_estimates (dest->loop_father);
|
|
}
|
|
}
|
|
|
|
s = redirect_edge_and_branch (e, dest);
|
|
|
|
/* redirect_edge_and_branch must not create a new edge. */
|
|
gcc_assert (s == e);
|
|
|
|
/* Add to the PHI nodes at DEST each PHI argument removed at the
|
|
destination of E. */
|
|
for (gsi = gsi_start_phis (dest);
|
|
!gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree def = gimple_phi_arg_def (phi, succ->dest_idx);
|
|
location_t locus = gimple_phi_arg_location_from_edge (phi, succ);
|
|
|
|
if (TREE_CODE (def) == SSA_NAME)
|
|
{
|
|
/* If DEF is one of the results of PHI nodes removed during
|
|
redirection, replace it with the PHI argument that used
|
|
to be on E. */
|
|
vec<edge_var_map> *head = redirect_edge_var_map_vector (e);
|
|
size_t length = head ? head->length () : 0;
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
edge_var_map *vm = &(*head)[i];
|
|
tree old_arg = redirect_edge_var_map_result (vm);
|
|
tree new_arg = redirect_edge_var_map_def (vm);
|
|
|
|
if (def == old_arg)
|
|
{
|
|
def = new_arg;
|
|
locus = redirect_edge_var_map_location (vm);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
add_phi_arg (phi, def, s, locus);
|
|
}
|
|
|
|
redirect_edge_var_map_clear (e);
|
|
}
|
|
|
|
/* Move debug statements. Reset them if the destination does not
|
|
have a single predecessor. */
|
|
move_debug_stmts_from_forwarder (bb, dest, dest_single_pred_p);
|
|
|
|
/* Update the dominators. */
|
|
dombb = get_immediate_dominator (CDI_DOMINATORS, bb);
|
|
domdest = get_immediate_dominator (CDI_DOMINATORS, dest);
|
|
if (domdest == bb)
|
|
{
|
|
/* Shortcut to avoid calling (relatively expensive)
|
|
nearest_common_dominator unless necessary. */
|
|
dom = dombb;
|
|
}
|
|
else
|
|
dom = nearest_common_dominator (CDI_DOMINATORS, domdest, dombb);
|
|
|
|
set_immediate_dominator (CDI_DOMINATORS, dest, dom);
|
|
|
|
/* Adjust latch infomation of BB's parent loop as otherwise
|
|
the cfg hook has a hard time not to kill the loop. */
|
|
if (current_loops && bb->loop_father->latch == bb)
|
|
bb->loop_father->latch = pred;
|
|
|
|
/* Remove BB since all of BB's incoming edges have been redirected
|
|
to DEST. */
|
|
delete_basic_block (bb);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This pass merges PHI nodes if one feeds into another. For example,
|
|
suppose we have the following:
|
|
|
|
goto <bb 9> (<L9>);
|
|
|
|
<L8>:;
|
|
tem_17 = foo ();
|
|
|
|
# tem_6 = PHI <tem_17(8), tem_23(7)>;
|
|
<L9>:;
|
|
|
|
# tem_3 = PHI <tem_6(9), tem_2(5)>;
|
|
<L10>:;
|
|
|
|
Then we merge the first PHI node into the second one like so:
|
|
|
|
goto <bb 9> (<L10>);
|
|
|
|
<L8>:;
|
|
tem_17 = foo ();
|
|
|
|
# tem_3 = PHI <tem_23(7), tem_2(5), tem_17(8)>;
|
|
<L10>:;
|
|
*/
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_merge_phi =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"mergephi", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_MERGE_PHI, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_merge_phi : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_merge_phi (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_merge_phi, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_merge_phi (m_ctxt); }
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_merge_phi
|
|
|
|
unsigned int
|
|
pass_merge_phi::execute (function *fun)
|
|
{
|
|
basic_block *worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun));
|
|
basic_block *current = worklist;
|
|
basic_block bb;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Find all PHI nodes that we may be able to merge. */
|
|
FOR_EACH_BB_FN (bb, fun)
|
|
{
|
|
basic_block dest;
|
|
|
|
/* Look for a forwarder block with PHI nodes. */
|
|
if (!tree_forwarder_block_p (bb, true))
|
|
continue;
|
|
|
|
dest = single_succ (bb);
|
|
|
|
/* We have to feed into another basic block with PHI
|
|
nodes. */
|
|
if (gimple_seq_empty_p (phi_nodes (dest))
|
|
/* We don't want to deal with a basic block with
|
|
abnormal edges. */
|
|
|| bb_has_abnormal_pred (bb))
|
|
continue;
|
|
|
|
if (!dominated_by_p (CDI_DOMINATORS, dest, bb))
|
|
{
|
|
/* If BB does not dominate DEST, then the PHI nodes at
|
|
DEST must be the only users of the results of the PHI
|
|
nodes at BB. */
|
|
*current++ = bb;
|
|
}
|
|
else
|
|
{
|
|
gphi_iterator gsi;
|
|
unsigned int dest_idx = single_succ_edge (bb)->dest_idx;
|
|
|
|
/* BB dominates DEST. There may be many users of the PHI
|
|
nodes in BB. However, there is still a trivial case we
|
|
can handle. If the result of every PHI in BB is used
|
|
only by a PHI in DEST, then we can trivially merge the
|
|
PHI nodes from BB into DEST. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree result = gimple_phi_result (phi);
|
|
use_operand_p imm_use;
|
|
gimple *use_stmt;
|
|
|
|
/* If the PHI's result is never used, then we can just
|
|
ignore it. */
|
|
if (has_zero_uses (result))
|
|
continue;
|
|
|
|
/* Get the single use of the result of this PHI node. */
|
|
if (!single_imm_use (result, &imm_use, &use_stmt)
|
|
|| gimple_code (use_stmt) != GIMPLE_PHI
|
|
|| gimple_bb (use_stmt) != dest
|
|
|| gimple_phi_arg_def (use_stmt, dest_idx) != result)
|
|
break;
|
|
}
|
|
|
|
/* If the loop above iterated through all the PHI nodes
|
|
in BB, then we can merge the PHIs from BB into DEST. */
|
|
if (gsi_end_p (gsi))
|
|
*current++ = bb;
|
|
}
|
|
}
|
|
|
|
/* Now let's drain WORKLIST. */
|
|
bool changed = false;
|
|
while (current != worklist)
|
|
{
|
|
bb = *--current;
|
|
changed |= remove_forwarder_block_with_phi (bb);
|
|
}
|
|
free (worklist);
|
|
|
|
/* Removing forwarder blocks can cause formerly irreducible loops
|
|
to become reducible if we merged two entry blocks. */
|
|
if (changed
|
|
&& current_loops)
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_merge_phi (gcc::context *ctxt)
|
|
{
|
|
return new pass_merge_phi (ctxt);
|
|
}
|
|
|
|
/* Pass: cleanup the CFG just before expanding trees to RTL.
|
|
This is just a round of label cleanups and case node grouping
|
|
because after the tree optimizers have run such cleanups may
|
|
be necessary. */
|
|
|
|
static unsigned int
|
|
execute_cleanup_cfg_post_optimizing (void)
|
|
{
|
|
unsigned int todo = execute_fixup_cfg ();
|
|
if (cleanup_tree_cfg ())
|
|
{
|
|
todo &= ~TODO_cleanup_cfg;
|
|
todo |= TODO_update_ssa;
|
|
}
|
|
maybe_remove_unreachable_handlers ();
|
|
cleanup_dead_labels ();
|
|
if (group_case_labels ())
|
|
todo |= TODO_cleanup_cfg;
|
|
if ((flag_compare_debug_opt || flag_compare_debug)
|
|
&& flag_dump_final_insns)
|
|
{
|
|
FILE *final_output = fopen (flag_dump_final_insns, "a");
|
|
|
|
if (!final_output)
|
|
{
|
|
error ("could not open final insn dump file %qs: %m",
|
|
flag_dump_final_insns);
|
|
flag_dump_final_insns = NULL;
|
|
}
|
|
else
|
|
{
|
|
int save_unnumbered = flag_dump_unnumbered;
|
|
int save_noaddr = flag_dump_noaddr;
|
|
|
|
flag_dump_noaddr = flag_dump_unnumbered = 1;
|
|
fprintf (final_output, "\n");
|
|
dump_enumerated_decls (final_output,
|
|
dump_flags | TDF_SLIM | TDF_NOUID);
|
|
flag_dump_noaddr = save_noaddr;
|
|
flag_dump_unnumbered = save_unnumbered;
|
|
if (fclose (final_output))
|
|
{
|
|
error ("could not close final insn dump file %qs: %m",
|
|
flag_dump_final_insns);
|
|
flag_dump_final_insns = NULL;
|
|
}
|
|
}
|
|
}
|
|
return todo;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_cleanup_cfg_post_optimizing =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"optimized", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_CLEANUP_CFG, /* tv_id */
|
|
PROP_cfg, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_remove_unused_locals, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_cleanup_cfg_post_optimizing : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_cleanup_cfg_post_optimizing (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_cleanup_cfg_post_optimizing, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual unsigned int execute (function *)
|
|
{
|
|
return execute_cleanup_cfg_post_optimizing ();
|
|
}
|
|
|
|
}; // class pass_cleanup_cfg_post_optimizing
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_cleanup_cfg_post_optimizing (gcc::context *ctxt)
|
|
{
|
|
return new pass_cleanup_cfg_post_optimizing (ctxt);
|
|
}
|
|
|
|
|
|
/* Delete all unreachable basic blocks and update callgraph.
|
|
Doing so is somewhat nontrivial because we need to update all clones and
|
|
remove inline function that become unreachable. */
|
|
|
|
bool
|
|
delete_unreachable_blocks_update_callgraph (cgraph_node *dst_node,
|
|
bool update_clones)
|
|
{
|
|
bool changed = false;
|
|
basic_block b, next_bb;
|
|
|
|
find_unreachable_blocks ();
|
|
|
|
/* Delete all unreachable basic blocks. */
|
|
|
|
for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
|
|
!= EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
|
|
{
|
|
next_bb = b->next_bb;
|
|
|
|
if (!(b->flags & BB_REACHABLE))
|
|
{
|
|
gimple_stmt_iterator bsi;
|
|
|
|
for (bsi = gsi_start_bb (b); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
struct cgraph_edge *e;
|
|
struct cgraph_node *node;
|
|
|
|
dst_node->remove_stmt_references (gsi_stmt (bsi));
|
|
|
|
if (gimple_code (gsi_stmt (bsi)) == GIMPLE_CALL
|
|
&&(e = dst_node->get_edge (gsi_stmt (bsi))) != NULL)
|
|
{
|
|
if (!e->inline_failed)
|
|
e->callee->remove_symbol_and_inline_clones (dst_node);
|
|
else
|
|
e->remove ();
|
|
}
|
|
if (update_clones && dst_node->clones)
|
|
for (node = dst_node->clones; node != dst_node;)
|
|
{
|
|
node->remove_stmt_references (gsi_stmt (bsi));
|
|
if (gimple_code (gsi_stmt (bsi)) == GIMPLE_CALL
|
|
&& (e = node->get_edge (gsi_stmt (bsi))) != NULL)
|
|
{
|
|
if (!e->inline_failed)
|
|
e->callee->remove_symbol_and_inline_clones (dst_node);
|
|
else
|
|
e->remove ();
|
|
}
|
|
|
|
if (node->clones)
|
|
node = node->clones;
|
|
else if (node->next_sibling_clone)
|
|
node = node->next_sibling_clone;
|
|
else
|
|
{
|
|
while (node != dst_node && !node->next_sibling_clone)
|
|
node = node->clone_of;
|
|
if (node != dst_node)
|
|
node = node->next_sibling_clone;
|
|
}
|
|
}
|
|
}
|
|
delete_basic_block (b);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|