mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-11 03:52:59 +00:00
83 lines
2.2 KiB
C
83 lines
2.2 KiB
C
/* cosq.c -- __float128 version of s_cos.c.
|
|
* Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* cosq(x)
|
|
* Return cosine function of x.
|
|
*
|
|
* kernel function:
|
|
* __quadmath_kernel_sinq ... sine function on [-pi/4,pi/4]
|
|
* __quadmath_kernel_cosq ... cosine function on [-pi/4,pi/4]
|
|
* __quadmath_rem_pio2q ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
__float128
|
|
cosq (__float128 x)
|
|
{
|
|
__float128 y[2],z=0.0Q;
|
|
int64_t n, ix;
|
|
|
|
/* High word of x. */
|
|
GET_FLT128_MSW64(ix,x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffffffffffffLL;
|
|
if(ix <= 0x3ffe921fb54442d1LL)
|
|
return __quadmath_kernel_cosq(x,z);
|
|
|
|
/* cos(Inf or NaN) is NaN */
|
|
else if (ix>=0x7fff000000000000LL) {
|
|
if (ix == 0x7fff000000000000LL) {
|
|
GET_FLT128_LSW64(n,x);
|
|
}
|
|
return x-x;
|
|
}
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = __quadmath_rem_pio2q(x,y);
|
|
switch(n&3) {
|
|
case 0: return __quadmath_kernel_cosq(y[0],y[1]);
|
|
case 1: return -__quadmath_kernel_sinq(y[0],y[1],1);
|
|
case 2: return -__quadmath_kernel_cosq(y[0],y[1]);
|
|
default:
|
|
return __quadmath_kernel_sinq(y[0],y[1],1);
|
|
}
|
|
}
|
|
}
|