mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 23:32:06 +00:00
222 lines
5.2 KiB
ArmAsm
222 lines
5.2 KiB
ArmAsm
/* This is a simple version of setjmp and longjmp.
|
|
|
|
Nick Clifton, Cygnus Solutions, 13 June 1997. */
|
|
|
|
/* ANSI concatenation macros. */
|
|
#define CONCAT(a, b) CONCAT2(a, b)
|
|
#define CONCAT2(a, b) a##b
|
|
|
|
#ifndef __USER_LABEL_PREFIX__
|
|
#error __USER_LABEL_PREFIX__ not defined
|
|
#endif
|
|
|
|
#define SYM(x) CONCAT (__USER_LABEL_PREFIX__, x)
|
|
|
|
#ifdef __ELF__
|
|
#define TYPE(x) .type SYM(x),function
|
|
#define SIZE(x) .size SYM(x), . - SYM(x)
|
|
#else
|
|
#define TYPE(x)
|
|
#define SIZE(x)
|
|
#endif
|
|
|
|
/* Arm/Thumb interworking support:
|
|
|
|
The interworking scheme expects functions to use a BX instruction
|
|
to return control to their parent. Since we need this code to work
|
|
in both interworked and non-interworked environments as well as with
|
|
older processors which do not have the BX instruction we do the
|
|
following:
|
|
Test the return address.
|
|
If the bottom bit is clear perform an "old style" function exit.
|
|
(We know that we are in ARM mode and returning to an ARM mode caller).
|
|
Otherwise use the BX instruction to perform the function exit.
|
|
|
|
We know that we will never attempt to perform the BX instruction on
|
|
an older processor, because that kind of processor will never be
|
|
interworked, and a return address with the bottom bit set will never
|
|
be generated.
|
|
|
|
In addition, we do not actually assemble the BX instruction as this would
|
|
require us to tell the assembler that the processor is an ARM7TDMI and
|
|
it would store this information in the binary. We want this binary to be
|
|
able to be linked with binaries compiled for older processors however, so
|
|
we do not want such information stored there.
|
|
|
|
If we are running using the APCS-26 convention however, then we never
|
|
test the bottom bit, because this is part of the processor status.
|
|
Instead we just do a normal return, since we know that we cannot be
|
|
returning to a Thumb caller - the Thumb does not support APCS-26.
|
|
|
|
Function entry is much simpler. If we are compiling for the Thumb we
|
|
just switch into ARM mode and then drop through into the rest of the
|
|
function. The function exit code will take care of the restore to
|
|
Thumb mode.
|
|
|
|
For Thumb-2 do everything in Thumb mode. */
|
|
|
|
#if defined(__ARM_ARCH_6M__)
|
|
/* ARMv6-M has to be implemented in Thumb mode. */
|
|
|
|
.thumb
|
|
.thumb_func
|
|
.globl SYM (setjmp)
|
|
TYPE (setjmp)
|
|
SYM (setjmp):
|
|
/* Save registers in jump buffer. */
|
|
stmia r0!, {r4, r5, r6, r7}
|
|
mov r1, r8
|
|
mov r2, r9
|
|
mov r3, r10
|
|
mov r4, fp
|
|
mov r5, sp
|
|
mov r6, lr
|
|
stmia r0!, {r1, r2, r3, r4, r5, r6}
|
|
sub r0, r0, #40
|
|
/* Restore callee-saved low regs. */
|
|
ldmia r0!, {r4, r5, r6, r7}
|
|
/* Return zero. */
|
|
mov r0, #0
|
|
bx lr
|
|
|
|
.thumb_func
|
|
.globl SYM (longjmp)
|
|
TYPE (longjmp)
|
|
SYM (longjmp):
|
|
/* Restore High regs. */
|
|
add r0, r0, #16
|
|
ldmia r0!, {r2, r3, r4, r5, r6}
|
|
mov r8, r2
|
|
mov r9, r3
|
|
mov r10, r4
|
|
mov fp, r5
|
|
mov sp, r6
|
|
ldmia r0!, {r3} /* lr */
|
|
/* Restore low regs. */
|
|
sub r0, r0, #40
|
|
ldmia r0!, {r4, r5, r6, r7}
|
|
/* Return the result argument, or 1 if it is zero. */
|
|
mov r0, r1
|
|
bne 1f
|
|
mov r0, #1
|
|
1:
|
|
bx r3
|
|
|
|
#else
|
|
|
|
#ifdef __APCS_26__
|
|
#define RET movs pc, lr
|
|
#elif defined(__thumb2__)
|
|
#define RET bx lr
|
|
#else
|
|
#define RET tst lr, #1; \
|
|
moveq pc, lr ; \
|
|
.word 0xe12fff1e /* bx lr */
|
|
#endif
|
|
|
|
#ifdef __thumb2__
|
|
.macro COND where when
|
|
i\where \when
|
|
.endm
|
|
#else
|
|
.macro COND where when
|
|
.endm
|
|
#endif
|
|
|
|
#if defined(__thumb2__)
|
|
.syntax unified
|
|
.macro MODE
|
|
.thumb
|
|
.thumb_func
|
|
.endm
|
|
.macro PROLOGUE name
|
|
.endm
|
|
|
|
#elif defined(__thumb__)
|
|
#define MODE .thumb_func
|
|
.macro PROLOGUE name
|
|
.code 16
|
|
bx pc
|
|
nop
|
|
.code 32
|
|
SYM (.arm_start_of.\name):
|
|
.endm
|
|
#else /* Arm */
|
|
#define MODE .code 32
|
|
.macro PROLOGUE name
|
|
.endm
|
|
#endif
|
|
|
|
.macro FUNC_START name
|
|
.text
|
|
.align 2
|
|
MODE
|
|
.globl SYM (\name)
|
|
TYPE (\name)
|
|
SYM (\name):
|
|
PROLOGUE \name
|
|
.endm
|
|
|
|
.macro FUNC_END name
|
|
RET
|
|
SIZE (\name)
|
|
.endm
|
|
|
|
/* --------------------------------------------------------------------
|
|
int setjmp (jmp_buf);
|
|
-------------------------------------------------------------------- */
|
|
|
|
FUNC_START setjmp
|
|
|
|
/* Save all the callee-preserved registers into the jump buffer. */
|
|
#ifdef __thumb2__
|
|
mov ip, sp
|
|
stmea a1!, { v1-v7, fp, ip, lr }
|
|
#else
|
|
stmea a1!, { v1-v7, fp, ip, sp, lr }
|
|
#endif
|
|
|
|
#if 0 /* Simulator does not cope with FP instructions yet. */
|
|
#ifndef __SOFTFP__
|
|
/* Save the floating point registers. */
|
|
sfmea f4, 4, [a1]
|
|
#endif
|
|
#endif
|
|
/* When setting up the jump buffer return 0. */
|
|
mov a1, #0
|
|
|
|
FUNC_END setjmp
|
|
|
|
/* --------------------------------------------------------------------
|
|
volatile void longjmp (jmp_buf, int);
|
|
-------------------------------------------------------------------- */
|
|
|
|
FUNC_START longjmp
|
|
|
|
/* If we have stack extension code it ought to be handled here. */
|
|
|
|
/* Restore the registers, retrieving the state when setjmp() was called. */
|
|
#ifdef __thumb2__
|
|
ldmfd a1!, { v1-v7, fp, ip, lr }
|
|
mov sp, ip
|
|
#else
|
|
ldmfd a1!, { v1-v7, fp, ip, sp, lr }
|
|
#endif
|
|
|
|
#if 0 /* Simulator does not cope with FP instructions yet. */
|
|
#ifndef __SOFTFP__
|
|
/* Restore floating point registers as well. */
|
|
lfmfd f4, 4, [a1]
|
|
#endif
|
|
#endif
|
|
/* Put the return value into the integer result register.
|
|
But if it is zero then return 1 instead. */
|
|
movs a1, a2
|
|
#ifdef __thumb2__
|
|
it eq
|
|
#endif
|
|
moveq a1, #1
|
|
|
|
FUNC_END longjmp
|
|
#endif
|