mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-02 18:53:22 +00:00
493 lines
13 KiB
Go
493 lines
13 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This file implements nat-to-string conversion functions.
|
|
|
|
package big
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"sync"
|
|
)
|
|
|
|
const digits = "0123456789abcdefghijklmnopqrstuvwxyz"
|
|
|
|
// Note: MaxBase = len(digits), but it must remain a rune constant
|
|
// for API compatibility.
|
|
|
|
// MaxBase is the largest number base accepted for string conversions.
|
|
const MaxBase = 'z' - 'a' + 10 + 1
|
|
|
|
// maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M.
|
|
// For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word.
|
|
// In other words, at most n digits in base b fit into a Word.
|
|
// TODO(gri) replace this with a table, generated at build time.
|
|
func maxPow(b Word) (p Word, n int) {
|
|
p, n = b, 1 // assuming b <= _M
|
|
for max := _M / b; p <= max; {
|
|
// p == b**n && p <= max
|
|
p *= b
|
|
n++
|
|
}
|
|
// p == b**n && p <= _M
|
|
return
|
|
}
|
|
|
|
// pow returns x**n for n > 0, and 1 otherwise.
|
|
func pow(x Word, n int) (p Word) {
|
|
// n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1
|
|
// thus x**n == product of x**(2**i) for all i where bi == 1
|
|
// (Russian Peasant Method for exponentiation)
|
|
p = 1
|
|
for n > 0 {
|
|
if n&1 != 0 {
|
|
p *= x
|
|
}
|
|
x *= x
|
|
n >>= 1
|
|
}
|
|
return
|
|
}
|
|
|
|
// scan scans the number corresponding to the longest possible prefix
|
|
// from r representing an unsigned number in a given conversion base.
|
|
// It returns the corresponding natural number res, the actual base b,
|
|
// a digit count, and a read or syntax error err, if any.
|
|
//
|
|
// number = [ prefix ] mantissa .
|
|
// prefix = "0" [ "x" | "X" | "b" | "B" ] .
|
|
// mantissa = digits | digits "." [ digits ] | "." digits .
|
|
// digits = digit { digit } .
|
|
// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
|
|
//
|
|
// Unless fracOk is set, the base argument must be 0 or a value between
|
|
// 2 and MaxBase. If fracOk is set, the base argument must be one of
|
|
// 0, 2, 10, or 16. Providing an invalid base argument leads to a run-
|
|
// time panic.
|
|
//
|
|
// For base 0, the number prefix determines the actual base: A prefix of
|
|
// ``0x'' or ``0X'' selects base 16; if fracOk is not set, the ``0'' prefix
|
|
// selects base 8, and a ``0b'' or ``0B'' prefix selects base 2. Otherwise
|
|
// the selected base is 10 and no prefix is accepted.
|
|
//
|
|
// If fracOk is set, an octal prefix is ignored (a leading ``0'' simply
|
|
// stands for a zero digit), and a period followed by a fractional part
|
|
// is permitted. The result value is computed as if there were no period
|
|
// present; and the count value is used to determine the fractional part.
|
|
//
|
|
// A result digit count > 0 corresponds to the number of (non-prefix) digits
|
|
// parsed. A digit count <= 0 indicates the presence of a period (if fracOk
|
|
// is set, only), and -count is the number of fractional digits found.
|
|
// In this case, the actual value of the scanned number is res * b**count.
|
|
//
|
|
func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
|
|
// reject illegal bases
|
|
baseOk := base == 0 ||
|
|
!fracOk && 2 <= base && base <= MaxBase ||
|
|
fracOk && (base == 2 || base == 10 || base == 16)
|
|
if !baseOk {
|
|
panic(fmt.Sprintf("illegal number base %d", base))
|
|
}
|
|
|
|
// one char look-ahead
|
|
ch, err := r.ReadByte()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// determine actual base
|
|
b = base
|
|
if base == 0 {
|
|
// actual base is 10 unless there's a base prefix
|
|
b = 10
|
|
if ch == '0' {
|
|
count = 1
|
|
switch ch, err = r.ReadByte(); err {
|
|
case nil:
|
|
// possibly one of 0x, 0X, 0b, 0B
|
|
if !fracOk {
|
|
b = 8
|
|
}
|
|
switch ch {
|
|
case 'x', 'X':
|
|
b = 16
|
|
case 'b', 'B':
|
|
b = 2
|
|
}
|
|
switch b {
|
|
case 16, 2:
|
|
count = 0 // prefix is not counted
|
|
if ch, err = r.ReadByte(); err != nil {
|
|
// io.EOF is also an error in this case
|
|
return
|
|
}
|
|
case 8:
|
|
count = 0 // prefix is not counted
|
|
}
|
|
case io.EOF:
|
|
// input is "0"
|
|
res = z[:0]
|
|
err = nil
|
|
return
|
|
default:
|
|
// read error
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert string
|
|
// Algorithm: Collect digits in groups of at most n digits in di
|
|
// and then use mulAddWW for every such group to add them to the
|
|
// result.
|
|
z = z[:0]
|
|
b1 := Word(b)
|
|
bn, n := maxPow(b1) // at most n digits in base b1 fit into Word
|
|
di := Word(0) // 0 <= di < b1**i < bn
|
|
i := 0 // 0 <= i < n
|
|
dp := -1 // position of decimal point
|
|
for {
|
|
if fracOk && ch == '.' {
|
|
fracOk = false
|
|
dp = count
|
|
// advance
|
|
if ch, err = r.ReadByte(); err != nil {
|
|
if err == io.EOF {
|
|
err = nil
|
|
break
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
// convert rune into digit value d1
|
|
var d1 Word
|
|
switch {
|
|
case '0' <= ch && ch <= '9':
|
|
d1 = Word(ch - '0')
|
|
case 'a' <= ch && ch <= 'z':
|
|
d1 = Word(ch - 'a' + 10)
|
|
case 'A' <= ch && ch <= 'Z':
|
|
d1 = Word(ch - 'A' + 10)
|
|
default:
|
|
d1 = MaxBase + 1
|
|
}
|
|
if d1 >= b1 {
|
|
r.UnreadByte() // ch does not belong to number anymore
|
|
break
|
|
}
|
|
count++
|
|
|
|
// collect d1 in di
|
|
di = di*b1 + d1
|
|
i++
|
|
|
|
// if di is "full", add it to the result
|
|
if i == n {
|
|
z = z.mulAddWW(z, bn, di)
|
|
di = 0
|
|
i = 0
|
|
}
|
|
|
|
// advance
|
|
if ch, err = r.ReadByte(); err != nil {
|
|
if err == io.EOF {
|
|
err = nil
|
|
break
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
if count == 0 {
|
|
// no digits found
|
|
switch {
|
|
case base == 0 && b == 8:
|
|
// there was only the octal prefix 0 (possibly followed by digits > 7);
|
|
// count as one digit and return base 10, not 8
|
|
count = 1
|
|
b = 10
|
|
case base != 0 || b != 8:
|
|
// there was neither a mantissa digit nor the octal prefix 0
|
|
err = errors.New("syntax error scanning number")
|
|
}
|
|
return
|
|
}
|
|
// count > 0
|
|
|
|
// add remaining digits to result
|
|
if i > 0 {
|
|
z = z.mulAddWW(z, pow(b1, i), di)
|
|
}
|
|
res = z.norm()
|
|
|
|
// adjust for fraction, if any
|
|
if dp >= 0 {
|
|
// 0 <= dp <= count > 0
|
|
count = dp - count
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// utoa converts x to an ASCII representation in the given base;
|
|
// base must be between 2 and MaxBase, inclusive.
|
|
func (x nat) utoa(base int) []byte {
|
|
return x.itoa(false, base)
|
|
}
|
|
|
|
// itoa is like utoa but it prepends a '-' if neg && x != 0.
|
|
func (x nat) itoa(neg bool, base int) []byte {
|
|
if base < 2 || base > MaxBase {
|
|
panic("invalid base")
|
|
}
|
|
|
|
// x == 0
|
|
if len(x) == 0 {
|
|
return []byte("0")
|
|
}
|
|
// len(x) > 0
|
|
|
|
// allocate buffer for conversion
|
|
i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
|
|
if neg {
|
|
i++
|
|
}
|
|
s := make([]byte, i)
|
|
|
|
// convert power of two and non power of two bases separately
|
|
if b := Word(base); b == b&-b {
|
|
// shift is base b digit size in bits
|
|
shift := trailingZeroBits(b) // shift > 0 because b >= 2
|
|
mask := Word(1<<shift - 1)
|
|
w := x[0] // current word
|
|
nbits := uint(_W) // number of unprocessed bits in w
|
|
|
|
// convert less-significant words (include leading zeros)
|
|
for k := 1; k < len(x); k++ {
|
|
// convert full digits
|
|
for nbits >= shift {
|
|
i--
|
|
s[i] = digits[w&mask]
|
|
w >>= shift
|
|
nbits -= shift
|
|
}
|
|
|
|
// convert any partial leading digit and advance to next word
|
|
if nbits == 0 {
|
|
// no partial digit remaining, just advance
|
|
w = x[k]
|
|
nbits = _W
|
|
} else {
|
|
// partial digit in current word w (== x[k-1]) and next word x[k]
|
|
w |= x[k] << nbits
|
|
i--
|
|
s[i] = digits[w&mask]
|
|
|
|
// advance
|
|
w = x[k] >> (shift - nbits)
|
|
nbits = _W - (shift - nbits)
|
|
}
|
|
}
|
|
|
|
// convert digits of most-significant word w (omit leading zeros)
|
|
for w != 0 {
|
|
i--
|
|
s[i] = digits[w&mask]
|
|
w >>= shift
|
|
}
|
|
|
|
} else {
|
|
bb, ndigits := maxPow(Word(b))
|
|
|
|
// construct table of successive squares of bb*leafSize to use in subdivisions
|
|
// result (table != nil) <=> (len(x) > leafSize > 0)
|
|
table := divisors(len(x), b, ndigits, bb)
|
|
|
|
// preserve x, create local copy for use by convertWords
|
|
q := nat(nil).set(x)
|
|
|
|
// convert q to string s in base b
|
|
q.convertWords(s, b, ndigits, bb, table)
|
|
|
|
// strip leading zeros
|
|
// (x != 0; thus s must contain at least one non-zero digit
|
|
// and the loop will terminate)
|
|
i = 0
|
|
for s[i] == '0' {
|
|
i++
|
|
}
|
|
}
|
|
|
|
if neg {
|
|
i--
|
|
s[i] = '-'
|
|
}
|
|
|
|
return s[i:]
|
|
}
|
|
|
|
// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
|
|
// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
|
|
// repeated nat/Word division.
|
|
//
|
|
// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
|
|
// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
|
|
// Recursive conversion divides q by its approximate square root, yielding two parts, each half
|
|
// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
|
|
// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
|
|
// is made better by splitting the subblocks recursively. Best is to split blocks until one more
|
|
// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
|
|
// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
|
|
// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
|
|
// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
|
|
// specific hardware.
|
|
//
|
|
func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
|
|
// split larger blocks recursively
|
|
if table != nil {
|
|
// len(q) > leafSize > 0
|
|
var r nat
|
|
index := len(table) - 1
|
|
for len(q) > leafSize {
|
|
// find divisor close to sqrt(q) if possible, but in any case < q
|
|
maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length
|
|
minLength := maxLength >> 1 // ~= log2 sqrt(q)
|
|
for index > 0 && table[index-1].nbits > minLength {
|
|
index-- // desired
|
|
}
|
|
if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
|
|
index--
|
|
if index < 0 {
|
|
panic("internal inconsistency")
|
|
}
|
|
}
|
|
|
|
// split q into the two digit number (q'*bbb + r) to form independent subblocks
|
|
q, r = q.div(r, q, table[index].bbb)
|
|
|
|
// convert subblocks and collect results in s[:h] and s[h:]
|
|
h := len(s) - table[index].ndigits
|
|
r.convertWords(s[h:], b, ndigits, bb, table[0:index])
|
|
s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1])
|
|
}
|
|
}
|
|
|
|
// having split any large blocks now process the remaining (small) block iteratively
|
|
i := len(s)
|
|
var r Word
|
|
if b == 10 {
|
|
// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
|
|
for len(q) > 0 {
|
|
// extract least significant, base bb "digit"
|
|
q, r = q.divW(q, bb)
|
|
for j := 0; j < ndigits && i > 0; j++ {
|
|
i--
|
|
// avoid % computation since r%10 == r - int(r/10)*10;
|
|
// this appears to be faster for BenchmarkString10000Base10
|
|
// and smaller strings (but a bit slower for larger ones)
|
|
t := r / 10
|
|
s[i] = '0' + byte(r-t<<3-t-t) // TODO(gri) replace w/ t*10 once compiler produces better code
|
|
r = t
|
|
}
|
|
}
|
|
} else {
|
|
for len(q) > 0 {
|
|
// extract least significant, base bb "digit"
|
|
q, r = q.divW(q, bb)
|
|
for j := 0; j < ndigits && i > 0; j++ {
|
|
i--
|
|
s[i] = digits[r%b]
|
|
r /= b
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepend high-order zeros
|
|
for i > 0 { // while need more leading zeros
|
|
i--
|
|
s[i] = '0'
|
|
}
|
|
}
|
|
|
|
// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
|
|
// Benchmark and configure leafSize using: go test -bench="Leaf"
|
|
// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
|
|
// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
|
|
var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
|
|
|
|
type divisor struct {
|
|
bbb nat // divisor
|
|
nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb)
|
|
ndigits int // digit length of divisor in terms of output base digits
|
|
}
|
|
|
|
var cacheBase10 struct {
|
|
sync.Mutex
|
|
table [64]divisor // cached divisors for base 10
|
|
}
|
|
|
|
// expWW computes x**y
|
|
func (z nat) expWW(x, y Word) nat {
|
|
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
|
|
}
|
|
|
|
// construct table of powers of bb*leafSize to use in subdivisions
|
|
func divisors(m int, b Word, ndigits int, bb Word) []divisor {
|
|
// only compute table when recursive conversion is enabled and x is large
|
|
if leafSize == 0 || m <= leafSize {
|
|
return nil
|
|
}
|
|
|
|
// determine k where (bb**leafSize)**(2**k) >= sqrt(x)
|
|
k := 1
|
|
for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
|
|
k++
|
|
}
|
|
|
|
// reuse and extend existing table of divisors or create new table as appropriate
|
|
var table []divisor // for b == 10, table overlaps with cacheBase10.table
|
|
if b == 10 {
|
|
cacheBase10.Lock()
|
|
table = cacheBase10.table[0:k] // reuse old table for this conversion
|
|
} else {
|
|
table = make([]divisor, k) // create new table for this conversion
|
|
}
|
|
|
|
// extend table
|
|
if table[k-1].ndigits == 0 {
|
|
// add new entries as needed
|
|
var larger nat
|
|
for i := 0; i < k; i++ {
|
|
if table[i].ndigits == 0 {
|
|
if i == 0 {
|
|
table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
|
|
table[0].ndigits = ndigits * leafSize
|
|
} else {
|
|
table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
|
|
table[i].ndigits = 2 * table[i-1].ndigits
|
|
}
|
|
|
|
// optimization: exploit aggregated extra bits in macro blocks
|
|
larger = nat(nil).set(table[i].bbb)
|
|
for mulAddVWW(larger, larger, b, 0) == 0 {
|
|
table[i].bbb = table[i].bbb.set(larger)
|
|
table[i].ndigits++
|
|
}
|
|
|
|
table[i].nbits = table[i].bbb.bitLen()
|
|
}
|
|
}
|
|
}
|
|
|
|
if b == 10 {
|
|
cacheBase10.Unlock()
|
|
}
|
|
|
|
return table
|
|
}
|