mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-09 18:33:06 +00:00
460 lines
11 KiB
Go
460 lines
11 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package big
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"math"
|
|
"strconv"
|
|
"strings"
|
|
"testing"
|
|
)
|
|
|
|
type StringTest struct {
|
|
in, out string
|
|
ok bool
|
|
}
|
|
|
|
var setStringTests = []StringTest{
|
|
{"0", "0", true},
|
|
{"-0", "0", true},
|
|
{"1", "1", true},
|
|
{"-1", "-1", true},
|
|
{"1.", "1", true},
|
|
{"1e0", "1", true},
|
|
{"1.e1", "10", true},
|
|
{in: "1e"},
|
|
{in: "1.e"},
|
|
{in: "1e+14e-5"},
|
|
{in: "1e4.5"},
|
|
{in: "r"},
|
|
{in: "a/b"},
|
|
{in: "a.b"},
|
|
{"-0.1", "-1/10", true},
|
|
{"-.1", "-1/10", true},
|
|
{"2/4", "1/2", true},
|
|
{".25", "1/4", true},
|
|
{"-1/5", "-1/5", true},
|
|
{"8129567.7690E14", "812956776900000000000", true},
|
|
{"78189e+4", "781890000", true},
|
|
{"553019.8935e+8", "55301989350000", true},
|
|
{"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true},
|
|
{"9877861857500000E-7", "3951144743/4", true},
|
|
{"2169378.417e-3", "2169378417/1000000", true},
|
|
{"884243222337379604041632732738665534", "884243222337379604041632732738665534", true},
|
|
{"53/70893980658822810696", "53/70893980658822810696", true},
|
|
{"106/141787961317645621392", "53/70893980658822810696", true},
|
|
{"204211327800791583.81095", "4084226556015831676219/20000", true},
|
|
{"0e9999999999", "0", true}, // issue #16176
|
|
{in: "1/0"},
|
|
{in: "4/3/2"}, // issue 17001
|
|
{in: "4/3/"},
|
|
{in: "4/3."},
|
|
{in: "4/"},
|
|
}
|
|
|
|
// These are not supported by fmt.Fscanf.
|
|
var setStringTests2 = []StringTest{
|
|
{"0x10", "16", true},
|
|
{"-010/1", "-8", true}, // TODO(gri) should we even permit octal here?
|
|
{"-010.", "-10", true},
|
|
{"0x10/0x20", "1/2", true},
|
|
{"0b1000/3", "8/3", true},
|
|
{in: "4/3x"},
|
|
// TODO(gri) add more tests
|
|
}
|
|
|
|
func TestRatSetString(t *testing.T) {
|
|
var tests []StringTest
|
|
tests = append(tests, setStringTests...)
|
|
tests = append(tests, setStringTests2...)
|
|
|
|
for i, test := range tests {
|
|
x, ok := new(Rat).SetString(test.in)
|
|
|
|
if ok {
|
|
if !test.ok {
|
|
t.Errorf("#%d SetString(%q) expected failure", i, test.in)
|
|
} else if x.RatString() != test.out {
|
|
t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out)
|
|
}
|
|
} else if x != nil {
|
|
t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestRatScan(t *testing.T) {
|
|
var buf bytes.Buffer
|
|
for i, test := range setStringTests {
|
|
x := new(Rat)
|
|
buf.Reset()
|
|
buf.WriteString(test.in)
|
|
|
|
_, err := fmt.Fscanf(&buf, "%v", x)
|
|
if err == nil != test.ok {
|
|
if test.ok {
|
|
t.Errorf("#%d (%s) error: %s", i, test.in, err)
|
|
} else {
|
|
t.Errorf("#%d (%s) expected error", i, test.in)
|
|
}
|
|
continue
|
|
}
|
|
if err == nil && x.RatString() != test.out {
|
|
t.Errorf("#%d got %s want %s", i, x.RatString(), test.out)
|
|
}
|
|
}
|
|
}
|
|
|
|
var floatStringTests = []struct {
|
|
in string
|
|
prec int
|
|
out string
|
|
}{
|
|
{"0", 0, "0"},
|
|
{"0", 4, "0.0000"},
|
|
{"1", 0, "1"},
|
|
{"1", 2, "1.00"},
|
|
{"-1", 0, "-1"},
|
|
{"0.05", 1, "0.1"},
|
|
{"-0.05", 1, "-0.1"},
|
|
{".25", 2, "0.25"},
|
|
{".25", 1, "0.3"},
|
|
{".25", 3, "0.250"},
|
|
{"-1/3", 3, "-0.333"},
|
|
{"-2/3", 4, "-0.6667"},
|
|
{"0.96", 1, "1.0"},
|
|
{"0.999", 2, "1.00"},
|
|
{"0.9", 0, "1"},
|
|
{".25", -1, "0"},
|
|
{".55", -1, "1"},
|
|
}
|
|
|
|
func TestFloatString(t *testing.T) {
|
|
for i, test := range floatStringTests {
|
|
x, _ := new(Rat).SetString(test.in)
|
|
|
|
if x.FloatString(test.prec) != test.out {
|
|
t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test inputs to Rat.SetString. The prefix "long:" causes the test
|
|
// to be skipped except in -long mode. (The threshold is about 500us.)
|
|
var float64inputs = []string{
|
|
// Constants plundered from strconv/testfp.txt.
|
|
|
|
// Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP
|
|
"5e+125",
|
|
"69e+267",
|
|
"999e-026",
|
|
"7861e-034",
|
|
"75569e-254",
|
|
"928609e-261",
|
|
"9210917e+080",
|
|
"84863171e+114",
|
|
"653777767e+273",
|
|
"5232604057e-298",
|
|
"27235667517e-109",
|
|
"653532977297e-123",
|
|
"3142213164987e-294",
|
|
"46202199371337e-072",
|
|
"231010996856685e-073",
|
|
"9324754620109615e+212",
|
|
"78459735791271921e+049",
|
|
"272104041512242479e+200",
|
|
"6802601037806061975e+198",
|
|
"20505426358836677347e-221",
|
|
"836168422905420598437e-234",
|
|
"4891559871276714924261e+222",
|
|
|
|
// Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP
|
|
"9e-265",
|
|
"85e-037",
|
|
"623e+100",
|
|
"3571e+263",
|
|
"81661e+153",
|
|
"920657e-023",
|
|
"4603285e-024",
|
|
"87575437e-309",
|
|
"245540327e+122",
|
|
"6138508175e+120",
|
|
"83356057653e+193",
|
|
"619534293513e+124",
|
|
"2335141086879e+218",
|
|
"36167929443327e-159",
|
|
"609610927149051e-255",
|
|
"3743626360493413e-165",
|
|
"94080055902682397e-242",
|
|
"899810892172646163e+283",
|
|
"7120190517612959703e+120",
|
|
"25188282901709339043e-252",
|
|
"308984926168550152811e-052",
|
|
"6372891218502368041059e+064",
|
|
|
|
// Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP
|
|
"5e-20",
|
|
"67e+14",
|
|
"985e+15",
|
|
"7693e-42",
|
|
"55895e-16",
|
|
"996622e-44",
|
|
"7038531e-32",
|
|
"60419369e-46",
|
|
"702990899e-20",
|
|
"6930161142e-48",
|
|
"25933168707e+13",
|
|
"596428896559e+20",
|
|
|
|
// Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP
|
|
"3e-23",
|
|
"57e+18",
|
|
"789e-35",
|
|
"2539e-18",
|
|
"76173e+28",
|
|
"887745e-11",
|
|
"5382571e-37",
|
|
"82381273e-35",
|
|
"750486563e-38",
|
|
"3752432815e-39",
|
|
"75224575729e-45",
|
|
"459926601011e+15",
|
|
|
|
// Constants plundered from strconv/atof_test.go.
|
|
|
|
"0",
|
|
"1",
|
|
"+1",
|
|
"1e23",
|
|
"1E23",
|
|
"100000000000000000000000",
|
|
"1e-100",
|
|
"123456700",
|
|
"99999999999999974834176",
|
|
"100000000000000000000001",
|
|
"100000000000000008388608",
|
|
"100000000000000016777215",
|
|
"100000000000000016777216",
|
|
"-1",
|
|
"-0.1",
|
|
"-0", // NB: exception made for this input
|
|
"1e-20",
|
|
"625e-3",
|
|
|
|
// largest float64
|
|
"1.7976931348623157e308",
|
|
"-1.7976931348623157e308",
|
|
// next float64 - too large
|
|
"1.7976931348623159e308",
|
|
"-1.7976931348623159e308",
|
|
// the border is ...158079
|
|
// borderline - okay
|
|
"1.7976931348623158e308",
|
|
"-1.7976931348623158e308",
|
|
// borderline - too large
|
|
"1.797693134862315808e308",
|
|
"-1.797693134862315808e308",
|
|
|
|
// a little too large
|
|
"1e308",
|
|
"2e308",
|
|
"1e309",
|
|
|
|
// way too large
|
|
"1e310",
|
|
"-1e310",
|
|
"1e400",
|
|
"-1e400",
|
|
"long:1e400000",
|
|
"long:-1e400000",
|
|
|
|
// denormalized
|
|
"1e-305",
|
|
"1e-306",
|
|
"1e-307",
|
|
"1e-308",
|
|
"1e-309",
|
|
"1e-310",
|
|
"1e-322",
|
|
// smallest denormal
|
|
"5e-324",
|
|
"4e-324",
|
|
"3e-324",
|
|
// too small
|
|
"2e-324",
|
|
// way too small
|
|
"1e-350",
|
|
"long:1e-400000",
|
|
// way too small, negative
|
|
"-1e-350",
|
|
"long:-1e-400000",
|
|
|
|
// try to overflow exponent
|
|
// [Disabled: too slow and memory-hungry with rationals.]
|
|
// "1e-4294967296",
|
|
// "1e+4294967296",
|
|
// "1e-18446744073709551616",
|
|
// "1e+18446744073709551616",
|
|
|
|
// http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
|
|
"2.2250738585072012e-308",
|
|
// http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
|
|
"2.2250738585072011e-308",
|
|
|
|
// A very large number (initially wrongly parsed by the fast algorithm).
|
|
"4.630813248087435e+307",
|
|
|
|
// A different kind of very large number.
|
|
"22.222222222222222",
|
|
"long:2." + strings.Repeat("2", 4000) + "e+1",
|
|
|
|
// Exactly halfway between 1 and math.Nextafter(1, 2).
|
|
// Round to even (down).
|
|
"1.00000000000000011102230246251565404236316680908203125",
|
|
// Slightly lower; still round down.
|
|
"1.00000000000000011102230246251565404236316680908203124",
|
|
// Slightly higher; round up.
|
|
"1.00000000000000011102230246251565404236316680908203126",
|
|
// Slightly higher, but you have to read all the way to the end.
|
|
"long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1",
|
|
|
|
// Smallest denormal, 2^(-1022-52)
|
|
"4.940656458412465441765687928682213723651e-324",
|
|
// Half of smallest denormal, 2^(-1022-53)
|
|
"2.470328229206232720882843964341106861825e-324",
|
|
// A little more than the exact half of smallest denormal
|
|
// 2^-1075 + 2^-1100. (Rounds to 1p-1074.)
|
|
"2.470328302827751011111470718709768633275e-324",
|
|
// The exact halfway between smallest normal and largest denormal:
|
|
// 2^-1022 - 2^-1075. (Rounds to 2^-1022.)
|
|
"2.225073858507201136057409796709131975935e-308",
|
|
|
|
"1152921504606846975", // 1<<60 - 1
|
|
"-1152921504606846975", // -(1<<60 - 1)
|
|
"1152921504606846977", // 1<<60 + 1
|
|
"-1152921504606846977", // -(1<<60 + 1)
|
|
|
|
"1/3",
|
|
}
|
|
|
|
// isFinite reports whether f represents a finite rational value.
|
|
// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
|
|
func isFinite(f float64) bool {
|
|
return math.Abs(f) <= math.MaxFloat64
|
|
}
|
|
|
|
func TestFloat32SpecialCases(t *testing.T) {
|
|
for _, input := range float64inputs {
|
|
if strings.HasPrefix(input, "long:") {
|
|
if !*long {
|
|
continue
|
|
}
|
|
input = input[len("long:"):]
|
|
}
|
|
|
|
r, ok := new(Rat).SetString(input)
|
|
if !ok {
|
|
t.Errorf("Rat.SetString(%q) failed", input)
|
|
continue
|
|
}
|
|
f, exact := r.Float32()
|
|
|
|
// 1. Check string -> Rat -> float32 conversions are
|
|
// consistent with strconv.ParseFloat.
|
|
// Skip this check if the input uses "a/b" rational syntax.
|
|
if !strings.Contains(input, "/") {
|
|
e64, _ := strconv.ParseFloat(input, 32)
|
|
e := float32(e64)
|
|
|
|
// Careful: negative Rats too small for
|
|
// float64 become -0, but Rat obviously cannot
|
|
// preserve the sign from SetString("-0").
|
|
switch {
|
|
case math.Float32bits(e) == math.Float32bits(f):
|
|
// Ok: bitwise equal.
|
|
case f == 0 && r.Num().BitLen() == 0:
|
|
// Ok: Rat(0) is equivalent to both +/- float64(0).
|
|
default:
|
|
t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
|
|
}
|
|
}
|
|
|
|
if !isFinite(float64(f)) {
|
|
continue
|
|
}
|
|
|
|
// 2. Check f is best approximation to r.
|
|
if !checkIsBestApprox32(t, f, r) {
|
|
// Append context information.
|
|
t.Errorf("(input was %q)", input)
|
|
}
|
|
|
|
// 3. Check f->R->f roundtrip is non-lossy.
|
|
checkNonLossyRoundtrip32(t, f)
|
|
|
|
// 4. Check exactness using slow algorithm.
|
|
if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact {
|
|
t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestFloat64SpecialCases(t *testing.T) {
|
|
for _, input := range float64inputs {
|
|
if strings.HasPrefix(input, "long:") {
|
|
if !*long {
|
|
continue
|
|
}
|
|
input = input[len("long:"):]
|
|
}
|
|
|
|
r, ok := new(Rat).SetString(input)
|
|
if !ok {
|
|
t.Errorf("Rat.SetString(%q) failed", input)
|
|
continue
|
|
}
|
|
f, exact := r.Float64()
|
|
|
|
// 1. Check string -> Rat -> float64 conversions are
|
|
// consistent with strconv.ParseFloat.
|
|
// Skip this check if the input uses "a/b" rational syntax.
|
|
if !strings.Contains(input, "/") {
|
|
e, _ := strconv.ParseFloat(input, 64)
|
|
|
|
// Careful: negative Rats too small for
|
|
// float64 become -0, but Rat obviously cannot
|
|
// preserve the sign from SetString("-0").
|
|
switch {
|
|
case math.Float64bits(e) == math.Float64bits(f):
|
|
// Ok: bitwise equal.
|
|
case f == 0 && r.Num().BitLen() == 0:
|
|
// Ok: Rat(0) is equivalent to both +/- float64(0).
|
|
default:
|
|
t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
|
|
}
|
|
}
|
|
|
|
if !isFinite(f) {
|
|
continue
|
|
}
|
|
|
|
// 2. Check f is best approximation to r.
|
|
if !checkIsBestApprox64(t, f, r) {
|
|
// Append context information.
|
|
t.Errorf("(input was %q)", input)
|
|
}
|
|
|
|
// 3. Check f->R->f roundtrip is non-lossy.
|
|
checkNonLossyRoundtrip64(t, f)
|
|
|
|
// 4. Check exactness using slow algorithm.
|
|
if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact {
|
|
t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact)
|
|
}
|
|
}
|
|
}
|