mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-09 18:33:06 +00:00
132 lines
5.0 KiB
Go
132 lines
5.0 KiB
Go
// Copyright 2017 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package big
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/rand"
|
|
"runtime"
|
|
"testing"
|
|
)
|
|
|
|
// TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa
|
|
// behaves like float math.Sqrt.
|
|
func TestFloatSqrt64(t *testing.T) {
|
|
// This test fails for gccgo on 386 with a one ULP difference,
|
|
// presumably due to the use of extended precision floating
|
|
// point.
|
|
if runtime.Compiler == "gccgo" && runtime.GOARCH == "386" {
|
|
t.Skip("skipping on gccgo for 386; gets a one ULP difference")
|
|
}
|
|
|
|
for i := 0; i < 1e5; i++ {
|
|
r := rand.Float64()
|
|
|
|
got := new(Float).SetPrec(53)
|
|
got.Sqrt(NewFloat(r))
|
|
want := NewFloat(math.Sqrt(r))
|
|
if got.Cmp(want) != 0 {
|
|
t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestFloatSqrt(t *testing.T) {
|
|
for _, test := range []struct {
|
|
x string
|
|
want string
|
|
}{
|
|
// Test values were generated on Wolfram Alpha using query
|
|
// 'sqrt(N) to 350 digits'
|
|
// 350 decimal digits give up to 1000 binary digits.
|
|
{"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"},
|
|
{"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"},
|
|
{"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"},
|
|
{"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"},
|
|
{"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"},
|
|
{"4.0", "2.0"},
|
|
|
|
{"1p512", "1p256"},
|
|
{"4p1024", "2p512"},
|
|
{"9p2048", "3p1024"},
|
|
|
|
{"1p-1024", "1p-512"},
|
|
{"4p-2048", "2p-1024"},
|
|
{"9p-4096", "3p-2048"},
|
|
} {
|
|
for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} {
|
|
x := new(Float).SetPrec(prec)
|
|
x.Parse(test.x, 10)
|
|
|
|
got := new(Float).SetPrec(prec).Sqrt(x)
|
|
want := new(Float).SetPrec(prec)
|
|
want.Parse(test.want, 10)
|
|
if got.Cmp(want) != 0 {
|
|
t.Errorf("prec = %d, Sqrt(%v) =\ngot %g;\nwant %g",
|
|
prec, test.x, got, want)
|
|
}
|
|
|
|
// Square test.
|
|
// If got holds the square root of x to precision p, then
|
|
// got = √x + k
|
|
// for some k such that |k| < 2**(-p). Thus,
|
|
// got² = (√x + k)² = x + 2k√n + k²
|
|
// and the error must satisfy
|
|
// err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n
|
|
// Ignoring the k² term for simplicity.
|
|
|
|
// err = |got² - x|
|
|
// (but do intermediate steps with 32 guard digits to
|
|
// avoid introducing spurious rounding-related errors)
|
|
sq := new(Float).SetPrec(prec+32).Mul(got, got)
|
|
diff := new(Float).Sub(sq, x)
|
|
err := diff.Abs(diff).SetPrec(prec)
|
|
|
|
// maxErr = 2**(-p+1)*√x
|
|
one := new(Float).SetPrec(prec).SetInt64(1)
|
|
maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got)
|
|
|
|
if err.Cmp(maxErr) >= 0 {
|
|
t.Errorf("prec = %d, Sqrt(%v) =\ngot err %g;\nwant maxErr %g",
|
|
prec, test.x, err, maxErr)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestFloatSqrtSpecial(t *testing.T) {
|
|
for _, test := range []struct {
|
|
x *Float
|
|
want *Float
|
|
}{
|
|
{NewFloat(+0), NewFloat(+0)},
|
|
{NewFloat(-0), NewFloat(-0)},
|
|
{NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))},
|
|
} {
|
|
got := new(Float).Sqrt(test.x)
|
|
if got.neg != test.want.neg || got.form != test.want.form {
|
|
t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)",
|
|
test.x, got, got.neg, test.want, test.want.neg)
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Benchmarks
|
|
|
|
func BenchmarkFloatSqrt(b *testing.B) {
|
|
for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} {
|
|
x := NewFloat(2)
|
|
z := new(Float).SetPrec(prec)
|
|
b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
|
|
b.ReportAllocs()
|
|
for n := 0; n < b.N; n++ {
|
|
z.Sqrt(x)
|
|
}
|
|
})
|
|
}
|
|
}
|