mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-09 18:33:06 +00:00
133 lines
3.3 KiB
Go
133 lines
3.3 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package cmplx
|
|
|
|
import "math"
|
|
|
|
// The original C code, the long comment, and the constants
|
|
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
|
|
// The go code is a simplified version of the original C.
|
|
//
|
|
// Cephes Math Library Release 2.8: June, 2000
|
|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
//
|
|
// The readme file at http://netlib.sandia.gov/cephes/ says:
|
|
// Some software in this archive may be from the book _Methods and
|
|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
|
// International, 1989) or from the Cephes Mathematical Library, a
|
|
// commercial product. In either event, it is copyrighted by the author.
|
|
// What you see here may be used freely but it comes with no support or
|
|
// guarantee.
|
|
//
|
|
// The two known misprints in the book are repaired here in the
|
|
// source listings for the gamma function and the incomplete beta
|
|
// integral.
|
|
//
|
|
// Stephen L. Moshier
|
|
// moshier@na-net.ornl.gov
|
|
|
|
// Complex circular sine
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// If
|
|
// z = x + iy,
|
|
//
|
|
// then
|
|
//
|
|
// w = sin x cosh y + i cos x sinh y.
|
|
//
|
|
// csin(z) = -i csinh(iz).
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// DEC -10,+10 8400 5.3e-17 1.3e-17
|
|
// IEEE -10,+10 30000 3.8e-16 1.0e-16
|
|
// Also tested by csin(casin(z)) = z.
|
|
|
|
// Sin returns the sine of x.
|
|
func Sin(x complex128) complex128 {
|
|
s, c := math.Sincos(real(x))
|
|
sh, ch := sinhcosh(imag(x))
|
|
return complex(s*ch, c*sh)
|
|
}
|
|
|
|
// Complex hyperbolic sine
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// csinh z = (cexp(z) - cexp(-z))/2
|
|
// = sinh x * cos y + i cosh x * sin y .
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// IEEE -10,+10 30000 3.1e-16 8.2e-17
|
|
|
|
// Sinh returns the hyperbolic sine of x.
|
|
func Sinh(x complex128) complex128 {
|
|
s, c := math.Sincos(imag(x))
|
|
sh, ch := sinhcosh(real(x))
|
|
return complex(c*sh, s*ch)
|
|
}
|
|
|
|
// Complex circular cosine
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// If
|
|
// z = x + iy,
|
|
//
|
|
// then
|
|
//
|
|
// w = cos x cosh y - i sin x sinh y.
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// DEC -10,+10 8400 4.5e-17 1.3e-17
|
|
// IEEE -10,+10 30000 3.8e-16 1.0e-16
|
|
|
|
// Cos returns the cosine of x.
|
|
func Cos(x complex128) complex128 {
|
|
s, c := math.Sincos(real(x))
|
|
sh, ch := sinhcosh(imag(x))
|
|
return complex(c*ch, -s*sh)
|
|
}
|
|
|
|
// Complex hyperbolic cosine
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// ccosh(z) = cosh x cos y + i sinh x sin y .
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// IEEE -10,+10 30000 2.9e-16 8.1e-17
|
|
|
|
// Cosh returns the hyperbolic cosine of x.
|
|
func Cosh(x complex128) complex128 {
|
|
s, c := math.Sincos(imag(x))
|
|
sh, ch := sinhcosh(real(x))
|
|
return complex(c*ch, s*sh)
|
|
}
|
|
|
|
// calculate sinh and cosh
|
|
func sinhcosh(x float64) (sh, ch float64) {
|
|
if math.Abs(x) <= 0.5 {
|
|
return math.Sinh(x), math.Cosh(x)
|
|
}
|
|
e := math.Exp(x)
|
|
ei := 0.5 / e
|
|
e *= 0.5
|
|
return e - ei, e + ei
|
|
}
|