mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-09 02:32:32 +00:00
423 lines
13 KiB
Go
423 lines
13 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
/*
|
|
Bessel function of the first and second kinds of order one.
|
|
*/
|
|
|
|
// The original C code and the long comment below are
|
|
// from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
|
|
// came with this notice. The go code is a simplified
|
|
// version of the original C.
|
|
//
|
|
// ====================================================
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
//
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
// Permission to use, copy, modify, and distribute this
|
|
// software is freely granted, provided that this notice
|
|
// is preserved.
|
|
// ====================================================
|
|
//
|
|
// __ieee754_j1(x), __ieee754_y1(x)
|
|
// Bessel function of the first and second kinds of order one.
|
|
// Method -- j1(x):
|
|
// 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...
|
|
// 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
|
// for x in (0,2)
|
|
// j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
|
// (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
|
// for x in (2,inf)
|
|
// j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
|
// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
|
// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
|
// as follow:
|
|
// cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
|
// = 1/sqrt(2) * (sin(x) - cos(x))
|
|
// sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
// = -1/sqrt(2) * (sin(x) + cos(x))
|
|
// (To avoid cancelation, use
|
|
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
// to compute the worse one.)
|
|
//
|
|
// 3 Special cases
|
|
// j1(nan)= nan
|
|
// j1(0) = 0
|
|
// j1(inf) = 0
|
|
//
|
|
// Method -- y1(x):
|
|
// 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
|
// 2. For x<2.
|
|
// Since
|
|
// y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
|
|
// therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
|
// We use the following function to approximate y1,
|
|
// y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
|
|
// where for x in [0,2] (abs err less than 2**-65.89)
|
|
// U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4
|
|
// V(z) = 1 + v0[0]*z + ... + v0[4]*z**5
|
|
// Note: For tiny x, 1/x dominate y1 and hence
|
|
// y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
|
// 3. For x>=2.
|
|
// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
|
// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
|
// by method mentioned above.
|
|
|
|
// J1 returns the order-one Bessel function of the first kind.
|
|
//
|
|
// Special cases are:
|
|
// J1(±Inf) = 0
|
|
// J1(NaN) = NaN
|
|
func J1(x float64) float64 {
|
|
const (
|
|
TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
|
|
Two129 = 1 << 129 // 2**129 0x4800000000000000
|
|
// R0/S0 on [0, 2]
|
|
R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
|
|
R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61
|
|
R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
|
|
R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9
|
|
S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53
|
|
S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664
|
|
S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498
|
|
S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C
|
|
S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8
|
|
)
|
|
// special cases
|
|
switch {
|
|
case IsNaN(x):
|
|
return x
|
|
case IsInf(x, 0) || x == 0:
|
|
return 0
|
|
}
|
|
|
|
sign := false
|
|
if x < 0 {
|
|
x = -x
|
|
sign = true
|
|
}
|
|
if x >= 2 {
|
|
s, c := Sincos(x)
|
|
ss := -s - c
|
|
cc := s - c
|
|
|
|
// make sure x+x does not overflow
|
|
if x < MaxFloat64/2 {
|
|
z := Cos(x + x)
|
|
if s*c > 0 {
|
|
cc = z / ss
|
|
} else {
|
|
ss = z / cc
|
|
}
|
|
}
|
|
|
|
// j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
|
// y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
|
|
|
var z float64
|
|
if x > Two129 {
|
|
z = (1 / SqrtPi) * cc / Sqrt(x)
|
|
} else {
|
|
u := pone(x)
|
|
v := qone(x)
|
|
z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
|
|
}
|
|
if sign {
|
|
return -z
|
|
}
|
|
return z
|
|
}
|
|
if x < TwoM27 { // |x|<2**-27
|
|
return 0.5 * x // inexact if x!=0 necessary
|
|
}
|
|
z := x * x
|
|
r := z * (R00 + z*(R01+z*(R02+z*R03)))
|
|
s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
|
|
r *= x
|
|
z = 0.5*x + r/s
|
|
if sign {
|
|
return -z
|
|
}
|
|
return z
|
|
}
|
|
|
|
// Y1 returns the order-one Bessel function of the second kind.
|
|
//
|
|
// Special cases are:
|
|
// Y1(+Inf) = 0
|
|
// Y1(0) = -Inf
|
|
// Y1(x < 0) = NaN
|
|
// Y1(NaN) = NaN
|
|
func Y1(x float64) float64 {
|
|
const (
|
|
TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000
|
|
Two129 = 1 << 129 // 2**129 0x4800000000000000
|
|
U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
|
|
U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1
|
|
U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
|
|
U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E
|
|
U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
|
|
V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0
|
|
V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764
|
|
V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6
|
|
V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86
|
|
V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A
|
|
)
|
|
// special cases
|
|
switch {
|
|
case x < 0 || IsNaN(x):
|
|
return NaN()
|
|
case IsInf(x, 1):
|
|
return 0
|
|
case x == 0:
|
|
return Inf(-1)
|
|
}
|
|
|
|
if x >= 2 {
|
|
s, c := Sincos(x)
|
|
ss := -s - c
|
|
cc := s - c
|
|
|
|
// make sure x+x does not overflow
|
|
if x < MaxFloat64/2 {
|
|
z := Cos(x + x)
|
|
if s*c > 0 {
|
|
cc = z / ss
|
|
} else {
|
|
ss = z / cc
|
|
}
|
|
}
|
|
// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
|
// where x0 = x-3pi/4
|
|
// Better formula:
|
|
// cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
|
// = 1/sqrt(2) * (sin(x) - cos(x))
|
|
// sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
// = -1/sqrt(2) * (cos(x) + sin(x))
|
|
// To avoid cancelation, use
|
|
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
// to compute the worse one.
|
|
|
|
var z float64
|
|
if x > Two129 {
|
|
z = (1 / SqrtPi) * ss / Sqrt(x)
|
|
} else {
|
|
u := pone(x)
|
|
v := qone(x)
|
|
z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
|
|
}
|
|
return z
|
|
}
|
|
if x <= TwoM54 { // x < 2**-54
|
|
return -(2 / Pi) / x
|
|
}
|
|
z := x * x
|
|
u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
|
|
v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
|
|
return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
|
|
}
|
|
|
|
// For x >= 8, the asymptotic expansions of pone is
|
|
// 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.
|
|
// We approximate pone by
|
|
// pone(x) = 1 + (R/S)
|
|
// where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10
|
|
// S = 1 + ps0*s**2 + ... + ps4*s**10
|
|
// and
|
|
// | pone(x)-1-R/S | <= 2**(-60.06)
|
|
|
|
// for x in [inf, 8]=1/[0,0.125]
|
|
var p1R8 = [6]float64{
|
|
0.00000000000000000000e+00, // 0x0000000000000000
|
|
1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
|
|
1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
|
|
4.12051854307378562225e+02, // 0x4079C0D4652EA590
|
|
3.87474538913960532227e+03, // 0x40AE457DA3A532CC
|
|
7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
|
|
}
|
|
var p1S8 = [5]float64{
|
|
1.14207370375678408436e+02, // 0x405C8D458E656CAC
|
|
3.65093083420853463394e+03, // 0x40AC85DC964D274F
|
|
3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
|
|
9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
|
|
3.08042720627888811578e+04, // 0x40DE1511697A0B2D
|
|
}
|
|
|
|
// for x in [8,4.5454] = 1/[0.125,0.22001]
|
|
var p1R5 = [6]float64{
|
|
1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
|
|
1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
|
|
6.80275127868432871736e+00, // 0x401B36046E6315E3
|
|
1.08308182990189109773e+02, // 0x405B13B9452602ED
|
|
5.17636139533199752805e+02, // 0x40802D16D052D649
|
|
5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
|
|
}
|
|
var p1S5 = [5]float64{
|
|
5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
|
|
9.91401418733614377743e+02, // 0x408EFB361B066701
|
|
5.35326695291487976647e+03, // 0x40B4E9445706B6FB
|
|
7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
|
|
1.50404688810361062679e+03, // 0x40978030036F5E51
|
|
}
|
|
|
|
// for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
|
|
var p1R3 = [6]float64{
|
|
3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
|
|
1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
|
|
3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
|
|
3.51194035591636932736e+01, // 0x40418F489DA6D129
|
|
9.10550110750781271918e+01, // 0x4056C3854D2C1837
|
|
4.85590685197364919645e+01, // 0x4048478F8EA83EE5
|
|
}
|
|
var p1S3 = [5]float64{
|
|
3.47913095001251519989e+01, // 0x40416549A134069C
|
|
3.36762458747825746741e+02, // 0x40750C3307F1A75F
|
|
1.04687139975775130551e+03, // 0x40905B7C5037D523
|
|
8.90811346398256432622e+02, // 0x408BD67DA32E31E9
|
|
1.03787932439639277504e+02, // 0x4059F26D7C2EED53
|
|
}
|
|
|
|
// for x in [2.8570,2] = 1/[0.3499,0.5]
|
|
var p1R2 = [6]float64{
|
|
1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
|
|
1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
|
|
2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
|
|
1.22426109148261232917e+01, // 0x40287C377F71A964
|
|
1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
|
|
5.07352312588818499250e+00, // 0x40144B49A574C1FE
|
|
}
|
|
var p1S2 = [5]float64{
|
|
2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
|
|
1.25290227168402751090e+02, // 0x405F529314F92CD5
|
|
2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
|
|
1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
|
|
8.36463893371618283368e+00, // 0x4020BAB1F44E5192
|
|
}
|
|
|
|
func pone(x float64) float64 {
|
|
var p *[6]float64
|
|
var q *[5]float64
|
|
if x >= 8 {
|
|
p = &p1R8
|
|
q = &p1S8
|
|
} else if x >= 4.5454 {
|
|
p = &p1R5
|
|
q = &p1S5
|
|
} else if x >= 2.8571 {
|
|
p = &p1R3
|
|
q = &p1S3
|
|
} else if x >= 2 {
|
|
p = &p1R2
|
|
q = &p1S2
|
|
}
|
|
z := 1 / (x * x)
|
|
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
|
s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
|
|
return 1 + r/s
|
|
}
|
|
|
|
// For x >= 8, the asymptotic expansions of qone is
|
|
// 3/8 s - 105/1024 s**3 - ..., where s = 1/x.
|
|
// We approximate qone by
|
|
// qone(x) = s*(0.375 + (R/S))
|
|
// where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10
|
|
// S = 1 + qs1*s**2 + ... + qs6*s**12
|
|
// and
|
|
// | qone(x)/s -0.375-R/S | <= 2**(-61.13)
|
|
|
|
// for x in [inf, 8] = 1/[0,0.125]
|
|
var q1R8 = [6]float64{
|
|
0.00000000000000000000e+00, // 0x0000000000000000
|
|
-1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
|
|
-1.62717534544589987888e+01, // 0xC0304591A26779F7
|
|
-7.59601722513950107896e+02, // 0xC087BCD053E4B576
|
|
-1.18498066702429587167e+04, // 0xC0C724E740F87415
|
|
-4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
|
|
}
|
|
var q1S8 = [6]float64{
|
|
1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5
|
|
7.82538599923348465381e+03, // 0x40BE9162D0D88419
|
|
1.33875336287249578163e+05, // 0x4100579AB0B75E98
|
|
7.19657723683240939863e+05, // 0x4125F65372869C19
|
|
6.66601232617776375264e+05, // 0x412457D27719AD5C
|
|
-2.94490264303834643215e+05, // 0xC111F9690EA5AA18
|
|
}
|
|
|
|
// for x in [8,4.5454] = 1/[0.125,0.22001]
|
|
var q1R5 = [6]float64{
|
|
-2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
|
|
-1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
|
|
-8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
|
|
-1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
|
|
-1.37319376065508163265e+03, // 0xC09574C66931734F
|
|
-2.61244440453215656817e+03, // 0xC0A468E388FDA79D
|
|
}
|
|
var q1S5 = [6]float64{
|
|
8.12765501384335777857e+01, // 0x405451B2FF5A11B2
|
|
1.99179873460485964642e+03, // 0x409F1F31E77BF839
|
|
1.74684851924908907677e+04, // 0x40D10F1F0D64CE29
|
|
4.98514270910352279316e+04, // 0x40E8576DAABAD197
|
|
2.79480751638918118260e+04, // 0x40DB4B04CF7C364B
|
|
-4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
|
|
}
|
|
|
|
// for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
|
|
var q1R3 = [6]float64{
|
|
-5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
|
|
-1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
|
|
-4.61011581139473403113e+00, // 0xC01270C23302D9FF
|
|
-5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
|
|
-2.28244540737631695038e+02, // 0xC06C87D34718D55F
|
|
-2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
|
|
}
|
|
var q1S3 = [6]float64{
|
|
4.76651550323729509273e+01, // 0x4047D523CCD367E4
|
|
6.73865112676699709482e+02, // 0x40850EEBC031EE3E
|
|
3.38015286679526343505e+03, // 0x40AA684E448E7C9A
|
|
5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6
|
|
1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B
|
|
-1.35201191444307340817e+02, // 0xC060E670290A311F
|
|
}
|
|
|
|
// for x in [2.8570,2] = 1/[0.3499,0.5]
|
|
var q1R2 = [6]float64{
|
|
-1.78381727510958865572e-07, // 0xBE87F12644C626D2
|
|
-1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
|
|
-2.75220568278187460720e+00, // 0xC006048469BB4EDA
|
|
-1.96636162643703720221e+01, // 0xC033A9E2C168907F
|
|
-4.23253133372830490089e+01, // 0xC04529A3DE104AAA
|
|
-2.13719211703704061733e+01, // 0xC0355F3639CF6E52
|
|
}
|
|
var q1S2 = [6]float64{
|
|
2.95333629060523854548e+01, // 0x403D888A78AE64FF
|
|
2.52981549982190529136e+02, // 0x406F9F68DB821CBA
|
|
7.57502834868645436472e+02, // 0x4087AC05CE49A0F7
|
|
7.39393205320467245656e+02, // 0x40871B2548D4C029
|
|
1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4
|
|
-4.95949898822628210127e+00, // 0xC013D686E71BE86B
|
|
}
|
|
|
|
func qone(x float64) float64 {
|
|
var p, q *[6]float64
|
|
if x >= 8 {
|
|
p = &q1R8
|
|
q = &q1S8
|
|
} else if x >= 4.5454 {
|
|
p = &q1R5
|
|
q = &q1S5
|
|
} else if x >= 2.8571 {
|
|
p = &q1R3
|
|
q = &q1S3
|
|
} else if x >= 2 {
|
|
p = &q1R2
|
|
q = &q1S2
|
|
}
|
|
z := 1 / (x * x)
|
|
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
|
s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
|
|
return (0.375 + r/s) / x
|
|
}
|