mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-11 19:49:32 +00:00
512 lines
14 KiB
C
512 lines
14 KiB
C
/* Copyright (C) 2007-2016 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctype.h>
|
|
#include "bid_internal.h"
|
|
#include "bid128_2_str.h"
|
|
#include "bid128_2_str_macros.h"
|
|
|
|
#define MAX_FORMAT_DIGITS 16
|
|
#define DECIMAL_EXPONENT_BIAS 398
|
|
#define MAX_DECIMAL_EXPONENT 767
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
|
|
void
|
|
bid64_to_string (char *ps, UINT64 * px
|
|
_EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
|
UINT64 x;
|
|
#else
|
|
|
|
void
|
|
bid64_to_string (char *ps, UINT64 x
|
|
_EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
|
#endif
|
|
// the destination string (pointed to by ps) must be pre-allocated
|
|
UINT64 sign_x, coefficient_x, D, ER10;
|
|
int istart, exponent_x, j, digits_x, bin_expon_cx;
|
|
int_float tempx;
|
|
UINT32 MiDi[12], *ptr;
|
|
UINT64 HI_18Dig, LO_18Dig, Tmp;
|
|
char *c_ptr_start, *c_ptr;
|
|
int midi_ind, k_lcv, len;
|
|
unsigned int save_fpsf;
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
x = *px;
|
|
#endif
|
|
|
|
save_fpsf = *pfpsf; // place holder only
|
|
// unpack arguments, check for NaN or Infinity
|
|
if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
|
|
// x is Inf. or NaN or 0
|
|
|
|
// Inf or NaN?
|
|
if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
|
if ((x & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
|
ps[0] = (sign_x) ? '-' : '+';
|
|
ps[1] = ((x & MASK_SNAN) == MASK_SNAN)? 'S':'Q';
|
|
ps[2] = 'N';
|
|
ps[3] = 'a';
|
|
ps[4] = 'N';
|
|
ps[5] = 0;
|
|
return;
|
|
}
|
|
// x is Inf
|
|
ps[0] = (sign_x) ? '-' : '+';
|
|
ps[1] = 'I';
|
|
ps[2] = 'n';
|
|
ps[3] = 'f';
|
|
ps[4] = 0;
|
|
return;
|
|
}
|
|
// 0
|
|
istart = 0;
|
|
if (sign_x) {
|
|
ps[istart++] = '-';
|
|
}
|
|
|
|
ps[istart++] = '0';
|
|
ps[istart++] = 'E';
|
|
|
|
exponent_x -= 398;
|
|
if (exponent_x < 0) {
|
|
ps[istart++] = '-';
|
|
exponent_x = -exponent_x;
|
|
} else
|
|
ps[istart++] = '+';
|
|
|
|
if (exponent_x) {
|
|
// get decimal digits in coefficient_x
|
|
tempx.d = (float) exponent_x;
|
|
bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
|
if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0])
|
|
digits_x++;
|
|
|
|
j = istart + digits_x - 1;
|
|
istart = j + 1;
|
|
|
|
// 2^32/10
|
|
ER10 = 0x1999999a;
|
|
|
|
while (exponent_x > 9) {
|
|
D = (UINT64) exponent_x *ER10;
|
|
D >>= 32;
|
|
exponent_x = exponent_x - (D << 1) - (D << 3);
|
|
|
|
ps[j--] = '0' + (char) exponent_x;
|
|
exponent_x = D;
|
|
}
|
|
ps[j] = '0' + (char) exponent_x;
|
|
} else {
|
|
ps[istart++] = '0';
|
|
}
|
|
|
|
ps[istart] = 0;
|
|
|
|
return;
|
|
}
|
|
// convert expon, coeff to ASCII
|
|
exponent_x -= DECIMAL_EXPONENT_BIAS;
|
|
|
|
ER10 = 0x1999999a;
|
|
|
|
istart = 0;
|
|
if (sign_x) {
|
|
ps[0] = '-';
|
|
istart = 1;
|
|
}
|
|
// if zero or non-canonical, set coefficient to '0'
|
|
if ((coefficient_x > 9999999999999999ull) || // non-canonical
|
|
((coefficient_x == 0)) // significand is zero
|
|
) {
|
|
ps[istart++] = '0';
|
|
} else {
|
|
/* ****************************************************
|
|
This takes a bid coefficient in C1.w[1],C1.w[0]
|
|
and put the converted character sequence at location
|
|
starting at &(str[k]). The function returns the number
|
|
of MiDi returned. Note that the character sequence
|
|
does not have leading zeros EXCEPT when the input is of
|
|
zero value. It will then output 1 character '0'
|
|
The algorithm essentailly tries first to get a sequence of
|
|
Millenial Digits "MiDi" and then uses table lookup to get the
|
|
character strings of these MiDis.
|
|
**************************************************** */
|
|
/* Algorithm first decompose possibly 34 digits in hi and lo
|
|
18 digits. (The high can have at most 16 digits). It then
|
|
uses macro that handle 18 digit portions.
|
|
The first step is to get hi and lo such that
|
|
2^(64) C1.w[1] + C1.w[0] = hi * 10^18 + lo, 0 <= lo < 10^18.
|
|
We use a table lookup method to obtain the hi and lo 18 digits.
|
|
[C1.w[1],C1.w[0]] = c_8 2^(107) + c_7 2^(101) + ... + c_0 2^(59) + d
|
|
where 0 <= d < 2^59 and each c_j has 6 bits. Because d fits in
|
|
18 digits, we set hi = 0, and lo = d to begin with.
|
|
We then retrieve from a table, for j = 0, 1, ..., 8
|
|
that gives us A and B where c_j 2^(59+6j) = A * 10^18 + B.
|
|
hi += A ; lo += B; After each accumulation into lo, we normalize
|
|
immediately. So at the end, we have the decomposition as we need. */
|
|
|
|
Tmp = coefficient_x >> 59;
|
|
LO_18Dig = (coefficient_x << 5) >> 5;
|
|
HI_18Dig = 0;
|
|
k_lcv = 0;
|
|
|
|
while (Tmp) {
|
|
midi_ind = (int) (Tmp & 0x000000000000003FLL);
|
|
midi_ind <<= 1;
|
|
Tmp >>= 6;
|
|
HI_18Dig += mod10_18_tbl[k_lcv][midi_ind++];
|
|
LO_18Dig += mod10_18_tbl[k_lcv++][midi_ind];
|
|
__L0_Normalize_10to18 (HI_18Dig, LO_18Dig);
|
|
}
|
|
|
|
ptr = MiDi;
|
|
__L1_Split_MiDi_6_Lead (LO_18Dig, ptr);
|
|
len = ptr - MiDi;
|
|
c_ptr_start = &(ps[istart]);
|
|
c_ptr = c_ptr_start;
|
|
|
|
/* now convert the MiDi into character strings */
|
|
__L0_MiDi2Str_Lead (MiDi[0], c_ptr);
|
|
for (k_lcv = 1; k_lcv < len; k_lcv++) {
|
|
__L0_MiDi2Str (MiDi[k_lcv], c_ptr);
|
|
}
|
|
istart = istart + (c_ptr - c_ptr_start);
|
|
}
|
|
|
|
ps[istart++] = 'E';
|
|
|
|
if (exponent_x < 0) {
|
|
ps[istart++] = '-';
|
|
exponent_x = -exponent_x;
|
|
} else
|
|
ps[istart++] = '+';
|
|
|
|
if (exponent_x) {
|
|
// get decimal digits in coefficient_x
|
|
tempx.d = (float) exponent_x;
|
|
bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
|
if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0])
|
|
digits_x++;
|
|
|
|
j = istart + digits_x - 1;
|
|
istart = j + 1;
|
|
|
|
// 2^32/10
|
|
ER10 = 0x1999999a;
|
|
|
|
while (exponent_x > 9) {
|
|
D = (UINT64) exponent_x *ER10;
|
|
D >>= 32;
|
|
exponent_x = exponent_x - (D << 1) - (D << 3);
|
|
|
|
ps[j--] = '0' + (char) exponent_x;
|
|
exponent_x = D;
|
|
}
|
|
ps[j] = '0' + (char) exponent_x;
|
|
} else {
|
|
ps[istart++] = '0';
|
|
}
|
|
|
|
ps[istart] = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
void
|
|
bid64_from_string (UINT64 * pres, char *ps
|
|
_RND_MODE_PARAM _EXC_FLAGS_PARAM
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
|
#else
|
|
UINT64
|
|
bid64_from_string (char *ps
|
|
_RND_MODE_PARAM _EXC_FLAGS_PARAM
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
|
#endif
|
|
UINT64 sign_x, coefficient_x = 0, rounded = 0, res;
|
|
int expon_x = 0, sgn_expon, ndigits, add_expon = 0, midpoint =
|
|
0, rounded_up = 0;
|
|
int dec_expon_scale = 0, right_radix_leading_zeros = 0, rdx_pt_enc =
|
|
0;
|
|
unsigned fpsc;
|
|
char c;
|
|
unsigned int save_fpsf;
|
|
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
|
#endif
|
|
#endif
|
|
|
|
save_fpsf = *pfpsf; // place holder only
|
|
// eliminate leading whitespace
|
|
while (((*ps == ' ') || (*ps == '\t')) && (*ps))
|
|
ps++;
|
|
|
|
// get first non-whitespace character
|
|
c = *ps;
|
|
|
|
// detect special cases (INF or NaN)
|
|
if (!c || (c != '.' && c != '-' && c != '+' && (c < '0' || c > '9'))) {
|
|
// Infinity?
|
|
if ((tolower_macro (ps[0]) == 'i' && tolower_macro (ps[1]) == 'n' &&
|
|
tolower_macro (ps[2]) == 'f') && (!ps[3] ||
|
|
(tolower_macro (ps[3]) == 'i' &&
|
|
tolower_macro (ps[4]) == 'n' && tolower_macro (ps[5]) == 'i' &&
|
|
tolower_macro (ps[6]) == 't' && tolower_macro (ps[7]) == 'y' &&
|
|
!ps[8]))) {
|
|
res = 0x7800000000000000ull;
|
|
BID_RETURN (res);
|
|
}
|
|
// return sNaN
|
|
if (tolower_macro (ps[0]) == 's' && tolower_macro (ps[1]) == 'n' &&
|
|
tolower_macro (ps[2]) == 'a' && tolower_macro (ps[3]) == 'n') {
|
|
// case insensitive check for snan
|
|
res = 0x7e00000000000000ull;
|
|
BID_RETURN (res);
|
|
} else {
|
|
// return qNaN
|
|
res = 0x7c00000000000000ull;
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
// detect +INF or -INF
|
|
if ((tolower_macro (ps[1]) == 'i' && tolower_macro (ps[2]) == 'n' &&
|
|
tolower_macro (ps[3]) == 'f') && (!ps[4] ||
|
|
(tolower_macro (ps[4]) == 'i' && tolower_macro (ps[5]) == 'n' &&
|
|
tolower_macro (ps[6]) == 'i' && tolower_macro (ps[7]) == 't' &&
|
|
tolower_macro (ps[8]) == 'y' && !ps[9]))) {
|
|
if (c == '+')
|
|
res = 0x7800000000000000ull;
|
|
else if (c == '-')
|
|
res = 0xf800000000000000ull;
|
|
else
|
|
res = 0x7c00000000000000ull;
|
|
BID_RETURN (res);
|
|
}
|
|
// if +sNaN, +SNaN, -sNaN, or -SNaN
|
|
if (tolower_macro (ps[1]) == 's' && tolower_macro (ps[2]) == 'n'
|
|
&& tolower_macro (ps[3]) == 'a' && tolower_macro (ps[4]) == 'n') {
|
|
if (c == '-')
|
|
res = 0xfe00000000000000ull;
|
|
else
|
|
res = 0x7e00000000000000ull;
|
|
BID_RETURN (res);
|
|
}
|
|
// determine sign
|
|
if (c == '-')
|
|
sign_x = 0x8000000000000000ull;
|
|
else
|
|
sign_x = 0;
|
|
|
|
// get next character if leading +/- sign
|
|
if (c == '-' || c == '+') {
|
|
ps++;
|
|
c = *ps;
|
|
}
|
|
// if c isn't a decimal point or a decimal digit, return NaN
|
|
if (c != '.' && (c < '0' || c > '9')) {
|
|
// return NaN
|
|
res = 0x7c00000000000000ull | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
|
|
rdx_pt_enc = 0;
|
|
|
|
// detect zero (and eliminate/ignore leading zeros)
|
|
if (*(ps) == '0' || *(ps) == '.') {
|
|
|
|
if (*(ps) == '.') {
|
|
rdx_pt_enc = 1;
|
|
ps++;
|
|
}
|
|
// if all numbers are zeros (with possibly 1 radix point, the number is zero
|
|
// should catch cases such as: 000.0
|
|
while (*ps == '0') {
|
|
ps++;
|
|
// for numbers such as 0.0000000000000000000000000000000000001001,
|
|
// we want to count the leading zeros
|
|
if (rdx_pt_enc) {
|
|
right_radix_leading_zeros++;
|
|
}
|
|
// if this character is a radix point, make sure we haven't already
|
|
// encountered one
|
|
if (*(ps) == '.') {
|
|
if (rdx_pt_enc == 0) {
|
|
rdx_pt_enc = 1;
|
|
// if this is the first radix point, and the next character is NULL,
|
|
// we have a zero
|
|
if (!*(ps + 1)) {
|
|
res =
|
|
((UINT64) (398 - right_radix_leading_zeros) << 53) |
|
|
sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
ps = ps + 1;
|
|
} else {
|
|
// if 2 radix points, return NaN
|
|
res = 0x7c00000000000000ull | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
} else if (!*(ps)) {
|
|
//pres->w[1] = 0x3040000000000000ull | sign_x;
|
|
res =
|
|
((UINT64) (398 - right_radix_leading_zeros) << 53) | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
}
|
|
}
|
|
|
|
c = *ps;
|
|
|
|
ndigits = 0;
|
|
while ((c >= '0' && c <= '9') || c == '.') {
|
|
if (c == '.') {
|
|
if (rdx_pt_enc) {
|
|
// return NaN
|
|
res = 0x7c00000000000000ull | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
rdx_pt_enc = 1;
|
|
ps++;
|
|
c = *ps;
|
|
continue;
|
|
}
|
|
dec_expon_scale += rdx_pt_enc;
|
|
|
|
ndigits++;
|
|
if (ndigits <= 16) {
|
|
coefficient_x = (coefficient_x << 1) + (coefficient_x << 3);
|
|
coefficient_x += (UINT64) (c - '0');
|
|
} else if (ndigits == 17) {
|
|
// coefficient rounding
|
|
switch(rnd_mode){
|
|
case ROUNDING_TO_NEAREST:
|
|
midpoint = (c == '5' && !(coefficient_x & 1)) ? 1 : 0;
|
|
// if coefficient is even and c is 5, prepare to round up if
|
|
// subsequent digit is nonzero
|
|
// if str[MAXDIG+1] > 5, we MUST round up
|
|
// if str[MAXDIG+1] == 5 and coefficient is ODD, ROUND UP!
|
|
if (c > '5' || (c == '5' && (coefficient_x & 1))) {
|
|
coefficient_x++;
|
|
rounded_up = 1;
|
|
break;
|
|
|
|
case ROUNDING_DOWN:
|
|
if(sign_x) { coefficient_x++; rounded_up=1; }
|
|
break;
|
|
case ROUNDING_UP:
|
|
if(!sign_x) { coefficient_x++; rounded_up=1; }
|
|
break;
|
|
case ROUNDING_TIES_AWAY:
|
|
if(c>='5') { coefficient_x++; rounded_up=1; }
|
|
break;
|
|
}
|
|
if (coefficient_x == 10000000000000000ull) {
|
|
coefficient_x = 1000000000000000ull;
|
|
add_expon = 1;
|
|
}
|
|
}
|
|
if (c > '0')
|
|
rounded = 1;
|
|
add_expon += 1;
|
|
} else { // ndigits > 17
|
|
add_expon++;
|
|
if (midpoint && c > '0') {
|
|
coefficient_x++;
|
|
midpoint = 0;
|
|
rounded_up = 1;
|
|
}
|
|
if (c > '0')
|
|
rounded = 1;
|
|
}
|
|
ps++;
|
|
c = *ps;
|
|
}
|
|
|
|
add_expon -= (dec_expon_scale + right_radix_leading_zeros);
|
|
|
|
if (!c) {
|
|
res =
|
|
fast_get_BID64_check_OF (sign_x,
|
|
add_expon + DECIMAL_EXPONENT_BIAS,
|
|
coefficient_x, 0, &fpsc);
|
|
BID_RETURN (res);
|
|
}
|
|
|
|
if (c != 'E' && c != 'e') {
|
|
// return NaN
|
|
res = 0x7c00000000000000ull | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
ps++;
|
|
c = *ps;
|
|
sgn_expon = (c == '-') ? 1 : 0;
|
|
if (c == '-' || c == '+') {
|
|
ps++;
|
|
c = *ps;
|
|
}
|
|
if (!c || c < '0' || c > '9') {
|
|
// return NaN
|
|
res = 0x7c00000000000000ull | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
|
|
while (c >= '0' && c <= '9') {
|
|
expon_x = (expon_x << 1) + (expon_x << 3);
|
|
expon_x += (int) (c - '0');
|
|
|
|
ps++;
|
|
c = *ps;
|
|
}
|
|
|
|
if (c) {
|
|
// return NaN
|
|
res = 0x7c00000000000000ull | sign_x;
|
|
BID_RETURN (res);
|
|
}
|
|
|
|
if (sgn_expon)
|
|
expon_x = -expon_x;
|
|
|
|
expon_x += add_expon + DECIMAL_EXPONENT_BIAS;
|
|
|
|
if (expon_x < 0) {
|
|
if (rounded_up)
|
|
coefficient_x--;
|
|
rnd_mode = 0;
|
|
res =
|
|
get_BID64_UF (sign_x, expon_x, coefficient_x, rounded, rnd_mode,
|
|
&fpsc);
|
|
BID_RETURN (res);
|
|
}
|
|
res = get_BID64 (sign_x, expon_x, coefficient_x, rnd_mode, &fpsc);
|
|
BID_RETURN (res);
|
|
}
|