mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-13 03:29:50 +00:00
3299 lines
87 KiB
Java
3299 lines
87 KiB
Java
/* Area.java -- represents a shape built by constructive area geometry
|
|
Copyright (C) 2002, 2004 Free Software Foundation
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.awt.geom;
|
|
|
|
import java.awt.Rectangle;
|
|
import java.awt.Shape;
|
|
import java.util.Vector;
|
|
|
|
|
|
/**
|
|
* The Area class represents any area for the purpose of
|
|
* Constructive Area Geometry (CAG) manipulations. CAG manipulations
|
|
* work as an area-wise form of boolean logic, where the basic operations are:
|
|
* <P><li>Add (in boolean algebra: A <B>or</B> B)<BR>
|
|
* <li>Subtract (in boolean algebra: A <B>and</B> (<B>not</B> B) )<BR>
|
|
* <li>Intersect (in boolean algebra: A <B>and</B> B)<BR>
|
|
* <li>Exclusive Or <BR>
|
|
* <img src="doc-files/Area-1.png" width="342" height="302"
|
|
* alt="Illustration of CAG operations" /><BR>
|
|
* Above is an illustration of the CAG operations on two ring shapes.<P>
|
|
*
|
|
* The contains and intersects() methods are also more accurate than the
|
|
* specification of #Shape requires.<P>
|
|
*
|
|
* Please note that constructing an Area can be slow
|
|
* (Self-intersection resolving is proportional to the square of
|
|
* the number of segments).<P>
|
|
* @see #add(Area)
|
|
* @see #subtract(Area)
|
|
* @see #intersect(Area)
|
|
* @see #exclusiveOr(Area)
|
|
*
|
|
* @author Sven de Marothy (sven@physto.se)
|
|
*
|
|
* @since 1.2
|
|
* @status Works, but could be faster and more reliable.
|
|
*/
|
|
public class Area implements Shape, Cloneable
|
|
{
|
|
/**
|
|
* General numerical precision
|
|
*/
|
|
private static final double EPSILON = 1E-11;
|
|
|
|
/**
|
|
* recursive subdivision epsilon - (see getRecursionDepth)
|
|
*/
|
|
private static final double RS_EPSILON = 1E-13;
|
|
|
|
/**
|
|
* Snap distance - points within this distance are considered equal
|
|
*/
|
|
private static final double PE_EPSILON = 1E-11;
|
|
|
|
/**
|
|
* Segment vectors containing solid areas and holes
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
Vector<Segment> solids;
|
|
|
|
/**
|
|
* Segment vectors containing solid areas and holes
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
Vector<Segment> holes;
|
|
|
|
/**
|
|
* Vector (temporary) storing curve-curve intersections
|
|
*/
|
|
private Vector<double[]> ccIntersections;
|
|
|
|
/**
|
|
* Winding rule WIND_NON_ZERO used, after construction,
|
|
* this is irrelevant.
|
|
*/
|
|
private int windingRule;
|
|
|
|
/**
|
|
* Constructs an empty Area
|
|
*/
|
|
public Area()
|
|
{
|
|
solids = new Vector<Segment>();
|
|
holes = new Vector<Segment>();
|
|
}
|
|
|
|
/**
|
|
* Constructs an Area from any given Shape. <P>
|
|
*
|
|
* If the Shape is self-intersecting, the created Area will consist
|
|
* of non-self-intersecting subpaths, and any inner paths which
|
|
* are found redundant in accordance with the Shape's winding rule
|
|
* will not be included.
|
|
*
|
|
* @param s the shape (<code>null</code> not permitted).
|
|
*
|
|
* @throws NullPointerException if <code>s</code> is <code>null</code>.
|
|
*/
|
|
public Area(Shape s)
|
|
{
|
|
this();
|
|
|
|
Vector<Segment> p = makeSegment(s);
|
|
|
|
// empty path
|
|
if (p == null)
|
|
return;
|
|
|
|
// delete empty paths
|
|
for (int i = 0; i < p.size(); i++)
|
|
if (p.elementAt(i).getSignedArea() == 0.0)
|
|
p.remove(i--);
|
|
|
|
/*
|
|
* Resolve self intersecting paths into non-intersecting
|
|
* solids and holes.
|
|
* Algorithm is as follows:
|
|
* 1: Create nodes at all self intersections
|
|
* 2: Put all segments into a list
|
|
* 3: Grab a segment, follow it, change direction at each node,
|
|
* removing segments from the list in the process
|
|
* 4: Repeat (3) until no segments remain in the list
|
|
* 5: Remove redundant paths and sort into solids and holes
|
|
*/
|
|
Segment v;
|
|
|
|
for (int i = 0; i < p.size(); i++)
|
|
{
|
|
Segment path = p.elementAt(i);
|
|
createNodesSelf(path);
|
|
}
|
|
|
|
if (p.size() > 1)
|
|
{
|
|
for (int i = 0; i < p.size() - 1; i++)
|
|
for (int j = i + 1; j < p.size(); j++)
|
|
{
|
|
Segment path1 = p.elementAt(i);
|
|
Segment path2 = p.elementAt(j);
|
|
createNodes(path1, path2);
|
|
}
|
|
}
|
|
|
|
// we have intersecting points.
|
|
Vector<Segment> segments = new Vector<Segment>();
|
|
|
|
for (int i = 0; i < p.size(); i++)
|
|
{
|
|
Segment path = v = p.elementAt(i);
|
|
do
|
|
{
|
|
segments.add(v);
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
Vector<Segment> paths = weilerAtherton(segments);
|
|
deleteRedundantPaths(paths);
|
|
}
|
|
|
|
/**
|
|
* Performs an add (union) operation on this area with another Area.<BR>
|
|
* @param area - the area to be unioned with this one
|
|
*/
|
|
public void add(Area area)
|
|
{
|
|
if (equals(area))
|
|
return;
|
|
if (area.isEmpty())
|
|
return;
|
|
|
|
Area B = (Area) area.clone();
|
|
|
|
Vector<Segment> pathA = new Vector<Segment>();
|
|
Vector<Segment> pathB = new Vector<Segment>();
|
|
pathA.addAll(solids);
|
|
pathA.addAll(holes);
|
|
pathB.addAll(B.solids);
|
|
pathB.addAll(B.holes);
|
|
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
Segment a = pathA.elementAt(i);
|
|
for (int j = 0; j < pathB.size(); j++)
|
|
{
|
|
Segment b = pathB.elementAt(j);
|
|
createNodes(a, b);
|
|
}
|
|
}
|
|
|
|
Vector<Segment> paths = new Vector<Segment>();
|
|
Segment v;
|
|
|
|
// we have intersecting points.
|
|
Vector<Segment> segments = new Vector<Segment>();
|
|
|
|
// In a union operation, we keep all
|
|
// segments of A oustide B and all B outside A
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
v = pathA.elementAt(i);
|
|
Segment path = v;
|
|
do
|
|
{
|
|
if (v.isSegmentOutside(area))
|
|
segments.add(v);
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
for (int i = 0; i < pathB.size(); i++)
|
|
{
|
|
v = pathB.elementAt(i);
|
|
Segment path = v;
|
|
do
|
|
{
|
|
if (v.isSegmentOutside(this))
|
|
segments.add(v);
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
paths = weilerAtherton(segments);
|
|
deleteRedundantPaths(paths);
|
|
}
|
|
|
|
/**
|
|
* Performs a subtraction operation on this Area.<BR>
|
|
* @param area the area to be subtracted from this area.
|
|
* @throws NullPointerException if <code>area</code> is <code>null</code>.
|
|
*/
|
|
public void subtract(Area area)
|
|
{
|
|
if (isEmpty() || area.isEmpty())
|
|
return;
|
|
|
|
if (equals(area))
|
|
{
|
|
reset();
|
|
return;
|
|
}
|
|
|
|
Vector<Segment> pathA = new Vector<Segment>();
|
|
Area B = (Area) area.clone();
|
|
pathA.addAll(solids);
|
|
pathA.addAll(holes);
|
|
|
|
// reverse the directions of B paths.
|
|
setDirection(B.holes, true);
|
|
setDirection(B.solids, false);
|
|
|
|
Vector<Segment> pathB = new Vector<Segment>();
|
|
pathB.addAll(B.solids);
|
|
pathB.addAll(B.holes);
|
|
|
|
// create nodes
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
Segment a = pathA.elementAt(i);
|
|
for (int j = 0; j < pathB.size(); j++)
|
|
{
|
|
Segment b = pathB.elementAt(j);
|
|
createNodes(a, b);
|
|
}
|
|
}
|
|
|
|
// we have intersecting points.
|
|
Vector<Segment> segments = new Vector<Segment>();
|
|
|
|
// In a subtraction operation, we keep all
|
|
// segments of A oustide B and all B within A
|
|
// We outsideness-test only one segment in each path
|
|
// and the segments before and after any node
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
Segment v = pathA.elementAt(i);
|
|
Segment path = v;
|
|
if (v.isSegmentOutside(area) && v.node == null)
|
|
segments.add(v);
|
|
boolean node = false;
|
|
do
|
|
{
|
|
if ((v.node != null || node))
|
|
{
|
|
node = (v.node != null);
|
|
if (v.isSegmentOutside(area))
|
|
segments.add(v);
|
|
}
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
for (int i = 0; i < pathB.size(); i++)
|
|
{
|
|
Segment v = (Segment) pathB.elementAt(i);
|
|
Segment path = v;
|
|
if (! v.isSegmentOutside(this) && v.node == null)
|
|
segments.add(v);
|
|
v = v.next;
|
|
boolean node = false;
|
|
do
|
|
{
|
|
if ((v.node != null || node))
|
|
{
|
|
node = (v.node != null);
|
|
if (! v.isSegmentOutside(this))
|
|
segments.add(v);
|
|
}
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
Vector<Segment> paths = weilerAtherton(segments);
|
|
deleteRedundantPaths(paths);
|
|
}
|
|
|
|
/**
|
|
* Performs an intersection operation on this Area.<BR>
|
|
* @param area - the area to be intersected with this area.
|
|
* @throws NullPointerException if <code>area</code> is <code>null</code>.
|
|
*/
|
|
public void intersect(Area area)
|
|
{
|
|
if (isEmpty() || area.isEmpty())
|
|
{
|
|
reset();
|
|
return;
|
|
}
|
|
if (equals(area))
|
|
return;
|
|
|
|
Vector<Segment> pathA = new Vector<Segment>();
|
|
Area B = (Area) area.clone();
|
|
pathA.addAll(solids);
|
|
pathA.addAll(holes);
|
|
|
|
Vector<Segment> pathB = new Vector<Segment>();
|
|
pathB.addAll(B.solids);
|
|
pathB.addAll(B.holes);
|
|
|
|
// create nodes
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
Segment a = pathA.elementAt(i);
|
|
for (int j = 0; j < pathB.size(); j++)
|
|
{
|
|
Segment b = pathB.elementAt(j);
|
|
createNodes(a, b);
|
|
}
|
|
}
|
|
|
|
// we have intersecting points.
|
|
Vector<Segment> segments = new Vector<Segment>();
|
|
|
|
// In an intersection operation, we keep all
|
|
// segments of A within B and all B within A
|
|
// (The rest must be redundant)
|
|
// We outsideness-test only one segment in each path
|
|
// and the segments before and after any node
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
Segment v = pathA.elementAt(i);
|
|
Segment path = v;
|
|
if (! v.isSegmentOutside(area) && v.node == null)
|
|
segments.add(v);
|
|
boolean node = false;
|
|
do
|
|
{
|
|
if ((v.node != null || node))
|
|
{
|
|
node = (v.node != null);
|
|
if (! v.isSegmentOutside(area))
|
|
segments.add(v);
|
|
}
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
for (int i = 0; i < pathB.size(); i++)
|
|
{
|
|
Segment v = pathB.elementAt(i);
|
|
Segment path = v;
|
|
if (! v.isSegmentOutside(this) && v.node == null)
|
|
segments.add(v);
|
|
v = v.next;
|
|
boolean node = false;
|
|
do
|
|
{
|
|
if ((v.node != null || node))
|
|
{
|
|
node = (v.node != null);
|
|
if (! v.isSegmentOutside(this))
|
|
segments.add(v);
|
|
}
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
Vector<Segment> paths = weilerAtherton(segments);
|
|
deleteRedundantPaths(paths);
|
|
}
|
|
|
|
/**
|
|
* Performs an exclusive-or operation on this Area.<BR>
|
|
* @param area - the area to be XORed with this area.
|
|
* @throws NullPointerException if <code>area</code> is <code>null</code>.
|
|
*/
|
|
public void exclusiveOr(Area area)
|
|
{
|
|
if (area.isEmpty())
|
|
return;
|
|
|
|
if (isEmpty())
|
|
{
|
|
Area B = (Area) area.clone();
|
|
solids = B.solids;
|
|
holes = B.holes;
|
|
return;
|
|
}
|
|
if (equals(area))
|
|
{
|
|
reset();
|
|
return;
|
|
}
|
|
|
|
Vector<Segment> pathA = new Vector<Segment>();
|
|
|
|
Area B = (Area) area.clone();
|
|
Vector<Segment> pathB = new Vector<Segment>();
|
|
pathA.addAll(solids);
|
|
pathA.addAll(holes);
|
|
|
|
// reverse the directions of B paths.
|
|
setDirection(B.holes, true);
|
|
setDirection(B.solids, false);
|
|
pathB.addAll(B.solids);
|
|
pathB.addAll(B.holes);
|
|
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
Segment a = pathA.elementAt(i);
|
|
for (int j = 0; j < pathB.size(); j++)
|
|
{
|
|
Segment b = pathB.elementAt(j);
|
|
createNodes(a, b);
|
|
}
|
|
}
|
|
|
|
Segment v;
|
|
|
|
// we have intersecting points.
|
|
Vector<Segment> segments = new Vector<Segment>();
|
|
|
|
// In an XOR operation, we operate on all segments
|
|
for (int i = 0; i < pathA.size(); i++)
|
|
{
|
|
v = pathA.elementAt(i);
|
|
Segment path = v;
|
|
do
|
|
{
|
|
segments.add(v);
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
for (int i = 0; i < pathB.size(); i++)
|
|
{
|
|
v = pathB.elementAt(i);
|
|
Segment path = v;
|
|
do
|
|
{
|
|
segments.add(v);
|
|
v = v.next;
|
|
}
|
|
while (v != path);
|
|
}
|
|
|
|
Vector<Segment> paths = weilerAtherton(segments);
|
|
deleteRedundantPaths(paths);
|
|
}
|
|
|
|
/**
|
|
* Clears the Area object, creating an empty area.
|
|
*/
|
|
public void reset()
|
|
{
|
|
solids = new Vector<Segment>();
|
|
holes = new Vector<Segment>();
|
|
}
|
|
|
|
/**
|
|
* Returns whether this area encloses any area.
|
|
* @return true if the object encloses any area.
|
|
*/
|
|
public boolean isEmpty()
|
|
{
|
|
if (solids.size() == 0)
|
|
return true;
|
|
|
|
double totalArea = 0;
|
|
for (int i = 0; i < solids.size(); i++)
|
|
totalArea += Math.abs(solids.elementAt(i).getSignedArea());
|
|
for (int i = 0; i < holes.size(); i++)
|
|
totalArea -= Math.abs(holes.elementAt(i).getSignedArea());
|
|
if (totalArea <= EPSILON)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Determines whether the Area consists entirely of line segments
|
|
* @return true if the Area lines-only, false otherwise
|
|
*/
|
|
public boolean isPolygonal()
|
|
{
|
|
for (int i = 0; i < holes.size(); i++)
|
|
if (!holes.elementAt(i).isPolygonal())
|
|
return false;
|
|
for (int i = 0; i < solids.size(); i++)
|
|
if (!solids.elementAt(i).isPolygonal())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Determines if the Area is rectangular.<P>
|
|
*
|
|
* This is strictly qualified. An area is considered rectangular if:<BR>
|
|
* <li>It consists of a single polygonal path.<BR>
|
|
* <li>It is oriented parallel/perpendicular to the xy axis<BR>
|
|
* <li>It must be exactly rectangular, i.e. small errors induced by
|
|
* transformations may cause a false result, although the area is
|
|
* visibly rectangular.<P>
|
|
* @return true if the above criteria are met, false otherwise
|
|
*/
|
|
public boolean isRectangular()
|
|
{
|
|
if (isEmpty())
|
|
return true;
|
|
|
|
if (holes.size() != 0 || solids.size() != 1)
|
|
return false;
|
|
|
|
Segment path = solids.elementAt(0);
|
|
if (! path.isPolygonal())
|
|
return false;
|
|
|
|
int nCorners = 0;
|
|
Segment s = path;
|
|
do
|
|
{
|
|
Segment s2 = s.next;
|
|
double d1 = (s.P2.getX() - s.P1.getX())*(s2.P2.getX() - s2.P1.getX())/
|
|
((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
|
|
double d2 = (s.P2.getY() - s.P1.getY())*(s2.P2.getY() - s2.P1.getY())/
|
|
((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
|
|
double dotproduct = d1 + d2;
|
|
|
|
// For some reason, only rectangles on the XY axis count.
|
|
if (d1 != 0 && d2 != 0)
|
|
return false;
|
|
|
|
if (Math.abs(dotproduct) == 0) // 90 degree angle
|
|
nCorners++;
|
|
else if ((Math.abs(1.0 - dotproduct) > 0)) // 0 degree angle?
|
|
return false; // if not, return false
|
|
|
|
s = s.next;
|
|
}
|
|
while (s != path);
|
|
|
|
return nCorners == 4;
|
|
}
|
|
|
|
/**
|
|
* Returns whether the Area consists of more than one simple
|
|
* (non self-intersecting) subpath.
|
|
*
|
|
* @return true if the Area consists of none or one simple subpath,
|
|
* false otherwise.
|
|
*/
|
|
public boolean isSingular()
|
|
{
|
|
return (holes.size() == 0 && solids.size() <= 1);
|
|
}
|
|
|
|
/**
|
|
* Returns the bounding box of the Area.<P> Unlike the CubicCurve2D and
|
|
* QuadraticCurve2D classes, this method will return the tightest possible
|
|
* bounding box, evaluating the extreme points of each curved segment.<P>
|
|
* @return the bounding box
|
|
*/
|
|
public Rectangle2D getBounds2D()
|
|
{
|
|
if (solids.size() == 0)
|
|
return new Rectangle2D.Double(0.0, 0.0, 0.0, 0.0);
|
|
|
|
double xmin;
|
|
double xmax;
|
|
double ymin;
|
|
double ymax;
|
|
xmin = xmax = solids.elementAt(0).P1.getX();
|
|
ymin = ymax = solids.elementAt(0).P1.getY();
|
|
|
|
for (int path = 0; path < solids.size(); path++)
|
|
{
|
|
Rectangle2D r = solids.elementAt(path).getPathBounds();
|
|
xmin = Math.min(r.getMinX(), xmin);
|
|
ymin = Math.min(r.getMinY(), ymin);
|
|
xmax = Math.max(r.getMaxX(), xmax);
|
|
ymax = Math.max(r.getMaxY(), ymax);
|
|
}
|
|
|
|
return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
|
|
}
|
|
|
|
/**
|
|
* Returns the bounds of this object in Rectangle format.
|
|
* Please note that this may lead to loss of precision.
|
|
*
|
|
* @return The bounds.
|
|
* @see #getBounds2D()
|
|
*/
|
|
public Rectangle getBounds()
|
|
{
|
|
return getBounds2D().getBounds();
|
|
}
|
|
|
|
/**
|
|
* Create a new area of the same run-time type with the same contents as
|
|
* this one.
|
|
*
|
|
* @return the clone
|
|
*/
|
|
public Object clone()
|
|
{
|
|
try
|
|
{
|
|
Area clone = new Area();
|
|
for (int i = 0; i < solids.size(); i++)
|
|
clone.solids.add(solids.elementAt(i).cloneSegmentList());
|
|
for (int i = 0; i < holes.size(); i++)
|
|
clone.holes.add(holes.elementAt(i).cloneSegmentList());
|
|
return clone;
|
|
}
|
|
catch (CloneNotSupportedException e)
|
|
{
|
|
throw (Error) new InternalError().initCause(e); // Impossible
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compares two Areas.
|
|
*
|
|
* @param area the area to compare against this area (<code>null</code>
|
|
* permitted).
|
|
* @return <code>true</code> if the areas are equal, and <code>false</code>
|
|
* otherwise.
|
|
*/
|
|
public boolean equals(Area area)
|
|
{
|
|
if (area == null)
|
|
return false;
|
|
|
|
if (! getBounds2D().equals(area.getBounds2D()))
|
|
return false;
|
|
|
|
if (solids.size() != area.solids.size()
|
|
|| holes.size() != area.holes.size())
|
|
return false;
|
|
|
|
Vector<Segment> pathA = new Vector<Segment>();
|
|
pathA.addAll(solids);
|
|
pathA.addAll(holes);
|
|
Vector<Segment> pathB = new Vector<Segment>();
|
|
pathB.addAll(area.solids);
|
|
pathB.addAll(area.holes);
|
|
|
|
int nPaths = pathA.size();
|
|
boolean[][] match = new boolean[2][nPaths];
|
|
|
|
for (int i = 0; i < nPaths; i++)
|
|
{
|
|
for (int j = 0; j < nPaths; j++)
|
|
{
|
|
Segment p1 = pathA.elementAt(i);
|
|
Segment p2 = pathB.elementAt(j);
|
|
if (! match[0][i] && ! match[1][j])
|
|
if (p1.pathEquals(p2))
|
|
match[0][i] = match[1][j] = true;
|
|
}
|
|
}
|
|
|
|
boolean result = true;
|
|
for (int i = 0; i < nPaths; i++)
|
|
result = result && match[0][i] && match[1][i];
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Transforms this area by the AffineTransform at.
|
|
*
|
|
* @param at the transform.
|
|
*/
|
|
public void transform(AffineTransform at)
|
|
{
|
|
for (int i = 0; i < solids.size(); i++)
|
|
solids.elementAt(i).transformSegmentList(at);
|
|
for (int i = 0; i < holes.size(); i++)
|
|
holes.elementAt(i).transformSegmentList(at);
|
|
|
|
// Note that the orientation is not invariant under inversion
|
|
if ((at.getType() & AffineTransform.TYPE_FLIP) != 0)
|
|
{
|
|
setDirection(holes, false);
|
|
setDirection(solids, true);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a new Area equal to this one, transformed
|
|
* by the AffineTransform at.
|
|
* @param at the transform.
|
|
* @return the transformed area
|
|
* @throws NullPointerException if <code>at</code> is <code>null</code>.
|
|
*/
|
|
public Area createTransformedArea(AffineTransform at)
|
|
{
|
|
Area a = (Area) clone();
|
|
a.transform(at);
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* Determines if the point (x,y) is contained within this Area.
|
|
*
|
|
* @param x the x-coordinate of the point.
|
|
* @param y the y-coordinate of the point.
|
|
* @return true if the point is contained, false otherwise.
|
|
*/
|
|
public boolean contains(double x, double y)
|
|
{
|
|
int n = 0;
|
|
for (int i = 0; i < solids.size(); i++)
|
|
if (solids.elementAt(i).contains(x, y))
|
|
n++;
|
|
|
|
for (int i = 0; i < holes.size(); i++)
|
|
if (holes.elementAt(i).contains(x, y))
|
|
n--;
|
|
|
|
return (n != 0);
|
|
}
|
|
|
|
/**
|
|
* Determines if the Point2D p is contained within this Area.
|
|
*
|
|
* @param p the point.
|
|
* @return <code>true</code> if the point is contained, <code>false</code>
|
|
* otherwise.
|
|
* @throws NullPointerException if <code>p</code> is <code>null</code>.
|
|
*/
|
|
public boolean contains(Point2D p)
|
|
{
|
|
return contains(p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Determines if the rectangle specified by (x,y) as the upper-left
|
|
* and with width w and height h is completely contained within this Area,
|
|
* returns false otherwise.<P>
|
|
*
|
|
* This method should always produce the correct results, unlike for other
|
|
* classes in geom.
|
|
*
|
|
* @param x the x-coordinate of the rectangle.
|
|
* @param y the y-coordinate of the rectangle.
|
|
* @param w the width of the the rectangle.
|
|
* @param h the height of the rectangle.
|
|
* @return <code>true</code> if the rectangle is considered contained
|
|
*/
|
|
public boolean contains(double x, double y, double w, double h)
|
|
{
|
|
LineSegment[] l = new LineSegment[4];
|
|
l[0] = new LineSegment(x, y, x + w, y);
|
|
l[1] = new LineSegment(x, y + h, x + w, y + h);
|
|
l[2] = new LineSegment(x, y, x, y + h);
|
|
l[3] = new LineSegment(x + w, y, x + w, y + h);
|
|
|
|
// Since every segment in the area must a contour
|
|
// between inside/outside segments, ANY intersection
|
|
// will mean the rectangle is not entirely contained.
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
for (int path = 0; path < solids.size(); path++)
|
|
{
|
|
Segment v;
|
|
Segment start;
|
|
start = v = solids.elementAt(path);
|
|
do
|
|
{
|
|
if (l[i].hasIntersections(v))
|
|
return false;
|
|
v = v.next;
|
|
}
|
|
while (v != start);
|
|
}
|
|
for (int path = 0; path < holes.size(); path++)
|
|
{
|
|
Segment v;
|
|
Segment start;
|
|
start = v = holes.elementAt(path);
|
|
do
|
|
{
|
|
if (l[i].hasIntersections(v))
|
|
return false;
|
|
v = v.next;
|
|
}
|
|
while (v != start);
|
|
}
|
|
}
|
|
|
|
// Is any point inside?
|
|
if (! contains(x, y))
|
|
return false;
|
|
|
|
// Final hoop: Is the rectangle non-intersecting and inside,
|
|
// but encloses a hole?
|
|
Rectangle2D r = new Rectangle2D.Double(x, y, w, h);
|
|
for (int path = 0; path < holes.size(); path++)
|
|
if (! holes.elementAt(path).isSegmentOutside(r))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Determines if the Rectangle2D specified by r is completely contained
|
|
* within this Area, returns false otherwise.<P>
|
|
*
|
|
* This method should always produce the correct results, unlike for other
|
|
* classes in geom.
|
|
*
|
|
* @param r the rectangle.
|
|
* @return <code>true</code> if the rectangle is considered contained
|
|
*
|
|
* @throws NullPointerException if <code>r</code> is <code>null</code>.
|
|
*/
|
|
public boolean contains(Rectangle2D r)
|
|
{
|
|
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|
}
|
|
|
|
/**
|
|
* Determines if the rectangle specified by (x,y) as the upper-left
|
|
* and with width w and height h intersects any part of this Area.
|
|
*
|
|
* @param x the x-coordinate for the rectangle.
|
|
* @param y the y-coordinate for the rectangle.
|
|
* @param w the width of the rectangle.
|
|
* @param h the height of the rectangle.
|
|
* @return <code>true</code> if the rectangle intersects the area,
|
|
* <code>false</code> otherwise.
|
|
*/
|
|
public boolean intersects(double x, double y, double w, double h)
|
|
{
|
|
if (solids.size() == 0)
|
|
return false;
|
|
|
|
LineSegment[] l = new LineSegment[4];
|
|
l[0] = new LineSegment(x, y, x + w, y);
|
|
l[1] = new LineSegment(x, y + h, x + w, y + h);
|
|
l[2] = new LineSegment(x, y, x, y + h);
|
|
l[3] = new LineSegment(x + w, y, x + w, y + h);
|
|
|
|
// Return true on any intersection
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
for (int path = 0; path < solids.size(); path++)
|
|
{
|
|
Segment v;
|
|
Segment start;
|
|
start = v = solids.elementAt(path);
|
|
do
|
|
{
|
|
if (l[i].hasIntersections(v))
|
|
return true;
|
|
v = v.next;
|
|
}
|
|
while (v != start);
|
|
}
|
|
for (int path = 0; path < holes.size(); path++)
|
|
{
|
|
Segment v;
|
|
Segment start;
|
|
start = v = holes.elementAt(path);
|
|
do
|
|
{
|
|
if (l[i].hasIntersections(v))
|
|
return true;
|
|
v = v.next;
|
|
}
|
|
while (v != start);
|
|
}
|
|
}
|
|
|
|
// Non-intersecting, Is any point inside?
|
|
if (contains(x + w * 0.5, y + h * 0.5))
|
|
return true;
|
|
|
|
// What if the rectangle encloses the whole shape?
|
|
Point2D p = solids.elementAt(0).getMidPoint();
|
|
if ((new Rectangle2D.Double(x, y, w, h)).contains(p))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Determines if the Rectangle2D specified by r intersects any
|
|
* part of this Area.
|
|
* @param r the rectangle to test intersection with (<code>null</code>
|
|
* not permitted).
|
|
* @return <code>true</code> if the rectangle intersects the area,
|
|
* <code>false</code> otherwise.
|
|
* @throws NullPointerException if <code>r</code> is <code>null</code>.
|
|
*/
|
|
public boolean intersects(Rectangle2D r)
|
|
{
|
|
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|
}
|
|
|
|
/**
|
|
* Returns a PathIterator object defining the contour of this Area,
|
|
* transformed by at.
|
|
*
|
|
* @param at the transform.
|
|
* @return A path iterator.
|
|
*/
|
|
public PathIterator getPathIterator(AffineTransform at)
|
|
{
|
|
return (new AreaIterator(at));
|
|
}
|
|
|
|
/**
|
|
* Returns a flattened PathIterator object defining the contour of this
|
|
* Area, transformed by at and with a defined flatness.
|
|
*
|
|
* @param at the transform.
|
|
* @param flatness the flatness.
|
|
* @return A path iterator.
|
|
*/
|
|
public PathIterator getPathIterator(AffineTransform at, double flatness)
|
|
{
|
|
return new FlatteningPathIterator(getPathIterator(at), flatness);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Non-public methods and classes
|
|
|
|
/**
|
|
* Private pathiterator object.
|
|
*/
|
|
private class AreaIterator implements PathIterator
|
|
{
|
|
private Vector<IteratorSegment> segments;
|
|
private int index;
|
|
private AffineTransform at;
|
|
|
|
// Simple compound type for segments
|
|
class IteratorSegment
|
|
{
|
|
int type;
|
|
double[] coords;
|
|
|
|
IteratorSegment()
|
|
{
|
|
coords = new double[6];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The contructor here does most of the work,
|
|
* creates a vector of IteratorSegments, which can
|
|
* readily be returned
|
|
*/
|
|
public AreaIterator(AffineTransform at)
|
|
{
|
|
this.at = at;
|
|
index = 0;
|
|
segments = new Vector<IteratorSegment>();
|
|
Vector<Segment> allpaths = new Vector<Segment>();
|
|
allpaths.addAll(solids);
|
|
allpaths.addAll(holes);
|
|
|
|
for (int i = 0; i < allpaths.size(); i++)
|
|
{
|
|
Segment v = allpaths.elementAt(i);
|
|
Segment start = v;
|
|
|
|
IteratorSegment is = new IteratorSegment();
|
|
is.type = SEG_MOVETO;
|
|
is.coords[0] = start.P1.getX();
|
|
is.coords[1] = start.P1.getY();
|
|
segments.add(is);
|
|
|
|
do
|
|
{
|
|
is = new IteratorSegment();
|
|
is.type = v.pathIteratorFormat(is.coords);
|
|
segments.add(is);
|
|
v = v.next;
|
|
}
|
|
while (v != start);
|
|
|
|
is = new IteratorSegment();
|
|
is.type = SEG_CLOSE;
|
|
segments.add(is);
|
|
}
|
|
}
|
|
|
|
public int currentSegment(double[] coords)
|
|
{
|
|
IteratorSegment s = segments.elementAt(index);
|
|
if (at != null)
|
|
at.transform(s.coords, 0, coords, 0, 3);
|
|
else
|
|
for (int i = 0; i < 6; i++)
|
|
coords[i] = s.coords[i];
|
|
return (s.type);
|
|
}
|
|
|
|
public int currentSegment(float[] coords)
|
|
{
|
|
IteratorSegment s = segments.elementAt(index);
|
|
double[] d = new double[6];
|
|
if (at != null)
|
|
{
|
|
at.transform(s.coords, 0, d, 0, 3);
|
|
for (int i = 0; i < 6; i++)
|
|
coords[i] = (float) d[i];
|
|
}
|
|
else
|
|
for (int i = 0; i < 6; i++)
|
|
coords[i] = (float) s.coords[i];
|
|
return (s.type);
|
|
}
|
|
|
|
// Note that the winding rule should not matter here,
|
|
// EVEN_ODD is chosen because it renders faster.
|
|
public int getWindingRule()
|
|
{
|
|
return (PathIterator.WIND_EVEN_ODD);
|
|
}
|
|
|
|
public boolean isDone()
|
|
{
|
|
return (index >= segments.size());
|
|
}
|
|
|
|
public void next()
|
|
{
|
|
index++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Performs the fundamental task of the Weiler-Atherton algorithm,
|
|
* traverse a list of segments, for each segment:
|
|
* Follow it, removing segments from the list and switching paths
|
|
* at each node. Do so until the starting segment is reached.
|
|
*
|
|
* Returns a Vector of the resulting paths.
|
|
*/
|
|
private Vector<Segment> weilerAtherton(Vector<Segment> segments)
|
|
{
|
|
Vector<Segment> paths = new Vector<Segment>();
|
|
while (segments.size() > 0)
|
|
{
|
|
// Iterate over the path
|
|
Segment start = segments.elementAt(0);
|
|
Segment s = start;
|
|
do
|
|
{
|
|
segments.remove(s);
|
|
if (s.node != null)
|
|
{ // switch over
|
|
s.next = s.node;
|
|
s.node = null;
|
|
}
|
|
s = s.next; // continue
|
|
}
|
|
while (s != start);
|
|
|
|
paths.add(start);
|
|
}
|
|
return paths;
|
|
}
|
|
|
|
/**
|
|
* A small wrapper class to store intersection points
|
|
*/
|
|
private class Intersection
|
|
{
|
|
Point2D p; // the 2D point of intersection
|
|
double ta; // the parametric value on a
|
|
double tb; // the parametric value on b
|
|
Segment seg; // segment placeholder for node setting
|
|
|
|
public Intersection(Point2D p, double ta, double tb)
|
|
{
|
|
this.p = p;
|
|
this.ta = ta;
|
|
this.tb = tb;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the recursion depth necessary to approximate the
|
|
* curve by line segments within the error RS_EPSILON.
|
|
*
|
|
* This is done with Wang's formula:
|
|
* L0 = max{0<=i<=N-2}(|xi - 2xi+1 + xi+2|,|yi - 2yi+1 + yi+2|)
|
|
* r0 = log4(sqrt(2)*N*(N-1)*L0/8e)
|
|
* Where e is the maximum distance error (RS_EPSILON)
|
|
*/
|
|
private int getRecursionDepth(CubicSegment curve)
|
|
{
|
|
double x0 = curve.P1.getX();
|
|
double y0 = curve.P1.getY();
|
|
|
|
double x1 = curve.cp1.getX();
|
|
double y1 = curve.cp1.getY();
|
|
|
|
double x2 = curve.cp2.getX();
|
|
double y2 = curve.cp2.getY();
|
|
|
|
double x3 = curve.P2.getX();
|
|
double y3 = curve.P2.getY();
|
|
|
|
double L0 = Math.max(Math.max(Math.abs(x0 - 2 * x1 + x2),
|
|
Math.abs(x1 - 2 * x2 + x3)),
|
|
Math.max(Math.abs(y0 - 2 * y1 + y2),
|
|
Math.abs(y1 - 2 * y2 + y3)));
|
|
|
|
double f = Math.sqrt(2) * 6.0 * L0 / (8.0 * RS_EPSILON);
|
|
|
|
int r0 = (int) Math.ceil(Math.log(f) / Math.log(4.0));
|
|
return (r0);
|
|
}
|
|
|
|
/**
|
|
* Performs recursive subdivision:
|
|
* @param c1 - curve 1
|
|
* @param c2 - curve 2
|
|
* @param depth1 - recursion depth of curve 1
|
|
* @param depth2 - recursion depth of curve 2
|
|
* @param t1 - global parametric value of the first curve's starting point
|
|
* @param t2 - global parametric value of the second curve's starting point
|
|
* @param w1 - global parametric length of curve 1
|
|
* @param w2 - global parametric length of curve 2
|
|
*
|
|
* The final four parameters are for keeping track of the parametric
|
|
* value of the curve. For a full curve t = 0, w = 1, w is halved with
|
|
* each subdivision.
|
|
*/
|
|
private void recursiveSubdivide(CubicCurve2D c1, CubicCurve2D c2,
|
|
int depth1, int depth2, double t1,
|
|
double t2, double w1, double w2)
|
|
{
|
|
boolean flat1 = depth1 <= 0;
|
|
boolean flat2 = depth2 <= 0;
|
|
|
|
if (flat1 && flat2)
|
|
{
|
|
double xlk = c1.getP2().getX() - c1.getP1().getX();
|
|
double ylk = c1.getP2().getY() - c1.getP1().getY();
|
|
|
|
double xnm = c2.getP2().getX() - c2.getP1().getX();
|
|
double ynm = c2.getP2().getY() - c2.getP1().getY();
|
|
|
|
double xmk = c2.getP1().getX() - c1.getP1().getX();
|
|
double ymk = c2.getP1().getY() - c1.getP1().getY();
|
|
double det = xnm * ylk - ynm * xlk;
|
|
|
|
if (det + 1.0 == 1.0)
|
|
return;
|
|
|
|
double detinv = 1.0 / det;
|
|
double s = (xnm * ymk - ynm * xmk) * detinv;
|
|
double t = (xlk * ymk - ylk * xmk) * detinv;
|
|
if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0))
|
|
return;
|
|
|
|
double[] temp = new double[2];
|
|
temp[0] = t1 + s * w1;
|
|
temp[1] = t2 + t * w1;
|
|
ccIntersections.add(temp);
|
|
return;
|
|
}
|
|
|
|
CubicCurve2D.Double c11 = new CubicCurve2D.Double();
|
|
CubicCurve2D.Double c12 = new CubicCurve2D.Double();
|
|
CubicCurve2D.Double c21 = new CubicCurve2D.Double();
|
|
CubicCurve2D.Double c22 = new CubicCurve2D.Double();
|
|
|
|
if (! flat1 && ! flat2)
|
|
{
|
|
depth1--;
|
|
depth2--;
|
|
w1 = w1 * 0.5;
|
|
w2 = w2 * 0.5;
|
|
c1.subdivide(c11, c12);
|
|
c2.subdivide(c21, c22);
|
|
if (c11.getBounds2D().intersects(c21.getBounds2D()))
|
|
recursiveSubdivide(c11, c21, depth1, depth2, t1, t2, w1, w2);
|
|
if (c11.getBounds2D().intersects(c22.getBounds2D()))
|
|
recursiveSubdivide(c11, c22, depth1, depth2, t1, t2 + w2, w1, w2);
|
|
if (c12.getBounds2D().intersects(c21.getBounds2D()))
|
|
recursiveSubdivide(c12, c21, depth1, depth2, t1 + w1, t2, w1, w2);
|
|
if (c12.getBounds2D().intersects(c22.getBounds2D()))
|
|
recursiveSubdivide(c12, c22, depth1, depth2, t1 + w1, t2 + w2, w1, w2);
|
|
return;
|
|
}
|
|
|
|
if (! flat1)
|
|
{
|
|
depth1--;
|
|
c1.subdivide(c11, c12);
|
|
w1 = w1 * 0.5;
|
|
if (c11.getBounds2D().intersects(c2.getBounds2D()))
|
|
recursiveSubdivide(c11, c2, depth1, depth2, t1, t2, w1, w2);
|
|
if (c12.getBounds2D().intersects(c2.getBounds2D()))
|
|
recursiveSubdivide(c12, c2, depth1, depth2, t1 + w1, t2, w1, w2);
|
|
return;
|
|
}
|
|
|
|
depth2--;
|
|
c2.subdivide(c21, c22);
|
|
w2 = w2 * 0.5;
|
|
if (c1.getBounds2D().intersects(c21.getBounds2D()))
|
|
recursiveSubdivide(c1, c21, depth1, depth2, t1, t2, w1, w2);
|
|
if (c1.getBounds2D().intersects(c22.getBounds2D()))
|
|
recursiveSubdivide(c1, c22, depth1, depth2, t1, t2 + w2, w1, w2);
|
|
}
|
|
|
|
/**
|
|
* Returns a set of interesections between two Cubic segments
|
|
* Or null if no intersections were found.
|
|
*
|
|
* The method used to find the intersection is recursive midpoint
|
|
* subdivision. Outline description:
|
|
*
|
|
* 1) Check if the bounding boxes of the curves intersect,
|
|
* 2) If so, divide the curves in the middle and test the bounding
|
|
* boxes again,
|
|
* 3) Repeat until a maximum recursion depth has been reached, where
|
|
* the intersecting curves can be approximated by line segments.
|
|
*
|
|
* This is a reasonably accurate method, although the recursion depth
|
|
* is typically around 20, the bounding-box tests allow for significant
|
|
* pruning of the subdivision tree.
|
|
*
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
Intersection[] cubicCubicIntersect(CubicSegment curve1, CubicSegment curve2)
|
|
{
|
|
Rectangle2D r1 = curve1.getBounds();
|
|
Rectangle2D r2 = curve2.getBounds();
|
|
|
|
if (! r1.intersects(r2))
|
|
return null;
|
|
|
|
ccIntersections = new Vector<double[]>();
|
|
recursiveSubdivide(curve1.getCubicCurve2D(), curve2.getCubicCurve2D(),
|
|
getRecursionDepth(curve1), getRecursionDepth(curve2),
|
|
0.0, 0.0, 1.0, 1.0);
|
|
|
|
if (ccIntersections.size() == 0)
|
|
return null;
|
|
|
|
Intersection[] results = new Intersection[ccIntersections.size()];
|
|
for (int i = 0; i < ccIntersections.size(); i++)
|
|
{
|
|
double[] temp = ccIntersections.elementAt(i);
|
|
results[i] = new Intersection(curve1.evaluatePoint(temp[0]), temp[0],
|
|
temp[1]);
|
|
}
|
|
ccIntersections = null;
|
|
return (results);
|
|
}
|
|
|
|
/**
|
|
* Returns the intersections between a line and a quadratic bezier
|
|
* Or null if no intersections are found.
|
|
* This is done through combining the line's equation with the
|
|
* parametric form of the Bezier and solving the resulting quadratic.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
Intersection[] lineQuadIntersect(LineSegment l, QuadSegment c)
|
|
{
|
|
double[] y = new double[3];
|
|
double[] x = new double[3];
|
|
double[] r = new double[3];
|
|
int nRoots;
|
|
double x0 = c.P1.getX();
|
|
double y0 = c.P1.getY();
|
|
double x1 = c.cp.getX();
|
|
double y1 = c.cp.getY();
|
|
double x2 = c.P2.getX();
|
|
double y2 = c.P2.getY();
|
|
|
|
double lx0 = l.P1.getX();
|
|
double ly0 = l.P1.getY();
|
|
double lx1 = l.P2.getX();
|
|
double ly1 = l.P2.getY();
|
|
double dx = lx1 - lx0;
|
|
double dy = ly1 - ly0;
|
|
|
|
// form r(t) = y(t) - x(t) for the bezier
|
|
y[0] = y0;
|
|
y[1] = 2 * (y1 - y0);
|
|
y[2] = (y2 - 2 * y1 + y0);
|
|
|
|
x[0] = x0;
|
|
x[1] = 2 * (x1 - x0);
|
|
x[2] = (x2 - 2 * x1 + x0);
|
|
|
|
// a point, not a line
|
|
if (dy == 0 && dx == 0)
|
|
return null;
|
|
|
|
// line on y axis
|
|
if (dx == 0 || (dy / dx) > 1.0)
|
|
{
|
|
double k = dx / dy;
|
|
x[0] -= lx0;
|
|
y[0] -= ly0;
|
|
y[0] *= k;
|
|
y[1] *= k;
|
|
y[2] *= k;
|
|
}
|
|
else
|
|
{
|
|
double k = dy / dx;
|
|
x[0] -= lx0;
|
|
y[0] -= ly0;
|
|
x[0] *= k;
|
|
x[1] *= k;
|
|
x[2] *= k;
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
r[i] = y[i] - x[i];
|
|
|
|
if ((nRoots = QuadCurve2D.solveQuadratic(r)) > 0)
|
|
{
|
|
Intersection[] temp = new Intersection[nRoots];
|
|
int intersections = 0;
|
|
for (int i = 0; i < nRoots; i++)
|
|
{
|
|
double t = r[i];
|
|
if (t >= 0.0 && t <= 1.0)
|
|
{
|
|
Point2D p = c.evaluatePoint(t);
|
|
|
|
// if the line is on an axis, snap the point to that axis.
|
|
if (dx == 0)
|
|
p.setLocation(lx0, p.getY());
|
|
if (dy == 0)
|
|
p.setLocation(p.getX(), ly0);
|
|
|
|
if (p.getX() <= Math.max(lx0, lx1)
|
|
&& p.getX() >= Math.min(lx0, lx1)
|
|
&& p.getY() <= Math.max(ly0, ly1)
|
|
&& p.getY() >= Math.min(ly0, ly1))
|
|
{
|
|
double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
|
|
temp[i] = new Intersection(p, lineparameter, t);
|
|
intersections++;
|
|
}
|
|
}
|
|
else
|
|
temp[i] = null;
|
|
}
|
|
if (intersections == 0)
|
|
return null;
|
|
|
|
Intersection[] rValues = new Intersection[intersections];
|
|
|
|
for (int i = 0; i < nRoots; i++)
|
|
if (temp[i] != null)
|
|
rValues[--intersections] = temp[i];
|
|
return (rValues);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns the intersections between a line and a cubic segment
|
|
* This is done through combining the line's equation with the
|
|
* parametric form of the Bezier and solving the resulting quadratic.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
Intersection[] lineCubicIntersect(LineSegment l, CubicSegment c)
|
|
{
|
|
double[] y = new double[4];
|
|
double[] x = new double[4];
|
|
double[] r = new double[4];
|
|
int nRoots;
|
|
double x0 = c.P1.getX();
|
|
double y0 = c.P1.getY();
|
|
double x1 = c.cp1.getX();
|
|
double y1 = c.cp1.getY();
|
|
double x2 = c.cp2.getX();
|
|
double y2 = c.cp2.getY();
|
|
double x3 = c.P2.getX();
|
|
double y3 = c.P2.getY();
|
|
|
|
double lx0 = l.P1.getX();
|
|
double ly0 = l.P1.getY();
|
|
double lx1 = l.P2.getX();
|
|
double ly1 = l.P2.getY();
|
|
double dx = lx1 - lx0;
|
|
double dy = ly1 - ly0;
|
|
|
|
// form r(t) = y(t) - x(t) for the bezier
|
|
y[0] = y0;
|
|
y[1] = 3 * (y1 - y0);
|
|
y[2] = 3 * (y2 + y0 - 2 * y1);
|
|
y[3] = y3 - 3 * y2 + 3 * y1 - y0;
|
|
|
|
x[0] = x0;
|
|
x[1] = 3 * (x1 - x0);
|
|
x[2] = 3 * (x2 + x0 - 2 * x1);
|
|
x[3] = x3 - 3 * x2 + 3 * x1 - x0;
|
|
|
|
// a point, not a line
|
|
if (dy == 0 && dx == 0)
|
|
return null;
|
|
|
|
// line on y axis
|
|
if (dx == 0 || (dy / dx) > 1.0)
|
|
{
|
|
double k = dx / dy;
|
|
x[0] -= lx0;
|
|
y[0] -= ly0;
|
|
y[0] *= k;
|
|
y[1] *= k;
|
|
y[2] *= k;
|
|
y[3] *= k;
|
|
}
|
|
else
|
|
{
|
|
double k = dy / dx;
|
|
x[0] -= lx0;
|
|
y[0] -= ly0;
|
|
x[0] *= k;
|
|
x[1] *= k;
|
|
x[2] *= k;
|
|
x[3] *= k;
|
|
}
|
|
for (int i = 0; i < 4; i++)
|
|
r[i] = y[i] - x[i];
|
|
|
|
if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
|
|
{
|
|
Intersection[] temp = new Intersection[nRoots];
|
|
int intersections = 0;
|
|
for (int i = 0; i < nRoots; i++)
|
|
{
|
|
double t = r[i];
|
|
if (t >= 0.0 && t <= 1.0)
|
|
{
|
|
// if the line is on an axis, snap the point to that axis.
|
|
Point2D p = c.evaluatePoint(t);
|
|
if (dx == 0)
|
|
p.setLocation(lx0, p.getY());
|
|
if (dy == 0)
|
|
p.setLocation(p.getX(), ly0);
|
|
|
|
if (p.getX() <= Math.max(lx0, lx1)
|
|
&& p.getX() >= Math.min(lx0, lx1)
|
|
&& p.getY() <= Math.max(ly0, ly1)
|
|
&& p.getY() >= Math.min(ly0, ly1))
|
|
{
|
|
double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
|
|
temp[i] = new Intersection(p, lineparameter, t);
|
|
intersections++;
|
|
}
|
|
}
|
|
else
|
|
temp[i] = null;
|
|
}
|
|
|
|
if (intersections == 0)
|
|
return null;
|
|
|
|
Intersection[] rValues = new Intersection[intersections];
|
|
for (int i = 0; i < nRoots; i++)
|
|
if (temp[i] != null)
|
|
rValues[--intersections] = temp[i];
|
|
return (rValues);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns the intersection between two lines, or null if there is no
|
|
* intersection.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
Intersection linesIntersect(LineSegment a, LineSegment b)
|
|
{
|
|
Point2D P1 = a.P1;
|
|
Point2D P2 = a.P2;
|
|
Point2D P3 = b.P1;
|
|
Point2D P4 = b.P2;
|
|
|
|
if (! Line2D.linesIntersect(P1.getX(), P1.getY(), P2.getX(), P2.getY(),
|
|
P3.getX(), P3.getY(), P4.getX(), P4.getY()))
|
|
return null;
|
|
|
|
double x1 = P1.getX();
|
|
double y1 = P1.getY();
|
|
double rx = P2.getX() - x1;
|
|
double ry = P2.getY() - y1;
|
|
|
|
double x2 = P3.getX();
|
|
double y2 = P3.getY();
|
|
double sx = P4.getX() - x2;
|
|
double sy = P4.getY() - y2;
|
|
|
|
double determinant = sx * ry - sy * rx;
|
|
double nom = (sx * (y2 - y1) + sy * (x1 - x2));
|
|
|
|
// Parallel lines don't intersect. At least we pretend they don't.
|
|
if (Math.abs(determinant) < EPSILON)
|
|
return null;
|
|
|
|
nom = nom / determinant;
|
|
|
|
if (nom == 0.0)
|
|
return null;
|
|
if (nom == 1.0)
|
|
return null;
|
|
|
|
Point2D p = new Point2D.Double(x1 + nom * rx, y1 + nom * ry);
|
|
|
|
return new Intersection(p, p.distance(P1) / P1.distance(P2),
|
|
p.distance(P3) / P3.distance(P4));
|
|
}
|
|
|
|
/**
|
|
* Determines if two points are equal, within an error margin
|
|
* 'snap distance'
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
boolean pointEquals(Point2D a, Point2D b)
|
|
{
|
|
return (a.equals(b) || a.distance(b) < PE_EPSILON);
|
|
}
|
|
|
|
/**
|
|
* Helper method
|
|
* Turns a shape into a Vector of Segments
|
|
*/
|
|
private Vector<Segment> makeSegment(Shape s)
|
|
{
|
|
Vector<Segment> paths = new Vector<Segment>();
|
|
PathIterator pi = s.getPathIterator(null);
|
|
double[] coords = new double[6];
|
|
Segment subpath = null;
|
|
Segment current = null;
|
|
double cx;
|
|
double cy;
|
|
double subpathx;
|
|
double subpathy;
|
|
cx = cy = subpathx = subpathy = 0.0;
|
|
|
|
this.windingRule = pi.getWindingRule();
|
|
|
|
while (! pi.isDone())
|
|
{
|
|
Segment v;
|
|
switch (pi.currentSegment(coords))
|
|
{
|
|
case PathIterator.SEG_MOVETO:
|
|
if (subpath != null)
|
|
{ // close existing open path
|
|
current.next = new LineSegment(cx, cy, subpathx, subpathy);
|
|
current = current.next;
|
|
current.next = subpath;
|
|
}
|
|
subpath = null;
|
|
subpathx = cx = coords[0];
|
|
subpathy = cy = coords[1];
|
|
break;
|
|
|
|
// replace 'close' with a line-to.
|
|
case PathIterator.SEG_CLOSE:
|
|
if (subpath != null && (subpathx != cx || subpathy != cy))
|
|
{
|
|
current.next = new LineSegment(cx, cy, subpathx, subpathy);
|
|
current = current.next;
|
|
current.next = subpath;
|
|
cx = subpathx;
|
|
cy = subpathy;
|
|
subpath = null;
|
|
}
|
|
else if (subpath != null)
|
|
{
|
|
current.next = subpath;
|
|
subpath = null;
|
|
}
|
|
break;
|
|
case PathIterator.SEG_LINETO:
|
|
if (cx != coords[0] || cy != coords[1])
|
|
{
|
|
v = new LineSegment(cx, cy, coords[0], coords[1]);
|
|
if (subpath == null)
|
|
{
|
|
subpath = current = v;
|
|
paths.add(subpath);
|
|
}
|
|
else
|
|
{
|
|
current.next = v;
|
|
current = current.next;
|
|
}
|
|
cx = coords[0];
|
|
cy = coords[1];
|
|
}
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
v = new QuadSegment(cx, cy, coords[0], coords[1], coords[2],
|
|
coords[3]);
|
|
if (subpath == null)
|
|
{
|
|
subpath = current = v;
|
|
paths.add(subpath);
|
|
}
|
|
else
|
|
{
|
|
current.next = v;
|
|
current = current.next;
|
|
}
|
|
cx = coords[2];
|
|
cy = coords[3];
|
|
break;
|
|
case PathIterator.SEG_CUBICTO:
|
|
v = new CubicSegment(cx, cy, coords[0], coords[1], coords[2],
|
|
coords[3], coords[4], coords[5]);
|
|
if (subpath == null)
|
|
{
|
|
subpath = current = v;
|
|
paths.add(subpath);
|
|
}
|
|
else
|
|
{
|
|
current.next = v;
|
|
current = current.next;
|
|
}
|
|
|
|
// check if the cubic is self-intersecting
|
|
double[] lpts = ((CubicSegment) v).getLoop();
|
|
if (lpts != null)
|
|
{
|
|
// if it is, break off the loop into its own path.
|
|
v.subdivideInsert(lpts[0]);
|
|
v.next.subdivideInsert((lpts[1] - lpts[0]) / (1.0 - lpts[0]));
|
|
|
|
CubicSegment loop = (CubicSegment) v.next;
|
|
v.next = loop.next;
|
|
loop.next = loop;
|
|
|
|
v.P2 = v.next.P1 = loop.P2 = loop.P1; // snap points
|
|
paths.add(loop);
|
|
current = v.next;
|
|
}
|
|
|
|
cx = coords[4];
|
|
cy = coords[5];
|
|
break;
|
|
}
|
|
pi.next();
|
|
}
|
|
|
|
if (subpath != null)
|
|
{ // close any open path
|
|
if (subpathx != cx || subpathy != cy)
|
|
{
|
|
current.next = new LineSegment(cx, cy, subpathx, subpathy);
|
|
current = current.next;
|
|
current.next = subpath;
|
|
}
|
|
else
|
|
current.next = subpath;
|
|
}
|
|
|
|
if (paths.size() == 0)
|
|
return (null);
|
|
|
|
return (paths);
|
|
}
|
|
|
|
/**
|
|
* Find the intersections of two separate closed paths,
|
|
* A and B, split the segments at the intersection points,
|
|
* and create nodes pointing from one to the other
|
|
*/
|
|
private int createNodes(Segment A, Segment B)
|
|
{
|
|
int nNodes = 0;
|
|
|
|
Segment a = A;
|
|
Segment b = B;
|
|
|
|
do
|
|
{
|
|
do
|
|
{
|
|
nNodes += a.splitIntersections(b);
|
|
b = b.next;
|
|
}
|
|
while (b != B);
|
|
|
|
a = a.next; // move to the next segment
|
|
}
|
|
while (a != A); // until one wrap.
|
|
|
|
return nNodes;
|
|
}
|
|
|
|
/**
|
|
* Find the intersections of a path with itself.
|
|
* Splits the segments at the intersection points,
|
|
* and create nodes pointing from one to the other.
|
|
*/
|
|
private int createNodesSelf(Segment A)
|
|
{
|
|
int nNodes = 0;
|
|
Segment a = A;
|
|
|
|
if (A.next == A)
|
|
return 0;
|
|
|
|
do
|
|
{
|
|
Segment b = a.next;
|
|
do
|
|
{
|
|
if (b != a) // necessary
|
|
nNodes += a.splitIntersections(b);
|
|
b = b.next;
|
|
}
|
|
while (b != A);
|
|
a = a.next; // move to the next segment
|
|
}
|
|
while (a != A); // until one wrap.
|
|
|
|
return (nNodes);
|
|
}
|
|
|
|
/**
|
|
* Deletes paths which are redundant from a list, (i.e. solid areas within
|
|
* solid areas) Clears any nodes. Sorts the remaining paths into solids
|
|
* and holes, sets their orientation and sets the solids and holes lists.
|
|
*/
|
|
private void deleteRedundantPaths(Vector<Segment> paths)
|
|
{
|
|
int npaths = paths.size();
|
|
|
|
int[][] contains = new int[npaths][npaths];
|
|
int[][] windingNumbers = new int[npaths][2];
|
|
int neg;
|
|
Rectangle2D[] bb = new Rectangle2D[npaths]; // path bounding boxes
|
|
|
|
neg = ((windingRule == PathIterator.WIND_NON_ZERO) ? -1 : 1);
|
|
|
|
for (int i = 0; i < npaths; i++)
|
|
bb[i] = paths.elementAt(i).getPathBounds();
|
|
|
|
// Find which path contains which, assign winding numbers
|
|
for (int i = 0; i < npaths; i++)
|
|
{
|
|
Segment pathA = paths.elementAt(i);
|
|
pathA.nullNodes(); // remove any now-redundant nodes, in case.
|
|
int windingA = pathA.hasClockwiseOrientation() ? 1 : neg;
|
|
|
|
for (int j = 0; j < npaths; j++)
|
|
if (i != j)
|
|
{
|
|
Segment pathB = paths.elementAt(j);
|
|
|
|
// A contains B
|
|
if (bb[i].intersects(bb[j]))
|
|
{
|
|
Segment s = pathB.next;
|
|
while (s.P1.getY() == s.P2.getY() && s != pathB)
|
|
s = s.next;
|
|
Point2D p = s.getMidPoint();
|
|
if (pathA.contains(p.getX(), p.getY()))
|
|
contains[i][j] = windingA;
|
|
}
|
|
else
|
|
// A does not contain B
|
|
contains[i][j] = 0;
|
|
}
|
|
else
|
|
contains[i][j] = windingA; // i == j
|
|
}
|
|
|
|
for (int i = 0; i < npaths; i++)
|
|
{
|
|
windingNumbers[i][0] = 0;
|
|
for (int j = 0; j < npaths; j++)
|
|
windingNumbers[i][0] += contains[j][i];
|
|
windingNumbers[i][1] = contains[i][i];
|
|
}
|
|
|
|
Vector<Segment> solids = new Vector<Segment>();
|
|
Vector<Segment> holes = new Vector<Segment>();
|
|
|
|
if (windingRule == PathIterator.WIND_NON_ZERO)
|
|
{
|
|
for (int i = 0; i < npaths; i++)
|
|
{
|
|
if (windingNumbers[i][0] == 0)
|
|
holes.add(paths.elementAt(i));
|
|
else if (windingNumbers[i][0] - windingNumbers[i][1] == 0
|
|
&& Math.abs(windingNumbers[i][0]) == 1)
|
|
solids.add(paths.elementAt(i));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
windingRule = PathIterator.WIND_NON_ZERO;
|
|
for (int i = 0; i < npaths; i++)
|
|
{
|
|
if ((windingNumbers[i][0] & 1) == 0)
|
|
holes.add(paths.elementAt(i));
|
|
else if ((windingNumbers[i][0] & 1) == 1)
|
|
solids.add(paths.elementAt(i));
|
|
}
|
|
}
|
|
|
|
setDirection(holes, false);
|
|
setDirection(solids, true);
|
|
this.holes = holes;
|
|
this.solids = solids;
|
|
}
|
|
|
|
/**
|
|
* Sets the winding direction of a Vector of paths
|
|
* @param clockwise gives the direction,
|
|
* true = clockwise, false = counter-clockwise
|
|
*/
|
|
private void setDirection(Vector<Segment> paths, boolean clockwise)
|
|
{
|
|
Segment v;
|
|
for (int i = 0; i < paths.size(); i++)
|
|
{
|
|
v = paths.elementAt(i);
|
|
if (clockwise != v.hasClockwiseOrientation())
|
|
v.reverseAll();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Class representing a linked-list of vertices forming a closed polygon,
|
|
* convex or concave, without holes.
|
|
*/
|
|
private abstract class Segment implements Cloneable
|
|
{
|
|
// segment type, PathIterator segment types are used.
|
|
Point2D P1;
|
|
Point2D P2;
|
|
Segment next;
|
|
Segment node;
|
|
|
|
Segment()
|
|
{
|
|
P1 = P2 = null;
|
|
node = next = null;
|
|
}
|
|
|
|
/**
|
|
* Reverses the direction of a single segment
|
|
*/
|
|
abstract void reverseCoords();
|
|
|
|
/**
|
|
* Returns the segment's midpoint
|
|
*/
|
|
abstract Point2D getMidPoint();
|
|
|
|
/**
|
|
* Returns the bounding box of this segment
|
|
*/
|
|
abstract Rectangle2D getBounds();
|
|
|
|
/**
|
|
* Transforms a single segment
|
|
*/
|
|
abstract void transform(AffineTransform at);
|
|
|
|
/**
|
|
* Returns the PathIterator type of a segment
|
|
*/
|
|
abstract int getType();
|
|
|
|
/**
|
|
*/
|
|
abstract int splitIntersections(Segment b);
|
|
|
|
/**
|
|
* Returns the PathIterator coords of a segment
|
|
*/
|
|
abstract int pathIteratorFormat(double[] coords);
|
|
|
|
/**
|
|
* Returns the number of intersections on the positive X axis,
|
|
* with the origin at (x,y), used for contains()-testing
|
|
*
|
|
* (Although that could be done by the line-intersect methods,
|
|
* a dedicated method is better to guarantee consitent handling
|
|
* of endpoint-special-cases)
|
|
*/
|
|
abstract int rayCrossing(double x, double y);
|
|
|
|
/**
|
|
* Subdivides the segment at parametric value t, inserting
|
|
* the new segment into the linked list after this,
|
|
* such that this becomes [0,t] and this.next becomes [t,1]
|
|
*/
|
|
abstract void subdivideInsert(double t);
|
|
|
|
/**
|
|
* Returns twice the area of a curve, relative the P1-P2 line
|
|
* Used for area calculations.
|
|
*/
|
|
abstract double curveArea();
|
|
|
|
/**
|
|
* Compare two segments.
|
|
*/
|
|
abstract boolean equals(Segment b);
|
|
|
|
/**
|
|
* Determines if this path of segments contains the point (x,y)
|
|
*/
|
|
boolean contains(double x, double y)
|
|
{
|
|
Segment v = this;
|
|
int crossings = 0;
|
|
do
|
|
{
|
|
int n = v.rayCrossing(x, y);
|
|
crossings += n;
|
|
v = v.next;
|
|
}
|
|
while (v != this);
|
|
return ((crossings & 1) == 1);
|
|
}
|
|
|
|
/**
|
|
* Nulls all nodes of the path. Clean up any 'hairs'.
|
|
*/
|
|
void nullNodes()
|
|
{
|
|
Segment v = this;
|
|
do
|
|
{
|
|
v.node = null;
|
|
v = v.next;
|
|
}
|
|
while (v != this);
|
|
}
|
|
|
|
/**
|
|
* Transforms each segment in the closed path
|
|
*/
|
|
void transformSegmentList(AffineTransform at)
|
|
{
|
|
Segment v = this;
|
|
do
|
|
{
|
|
v.transform(at);
|
|
v = v.next;
|
|
}
|
|
while (v != this);
|
|
}
|
|
|
|
/**
|
|
* Determines the winding direction of the path
|
|
* By the sign of the area.
|
|
*/
|
|
boolean hasClockwiseOrientation()
|
|
{
|
|
return (getSignedArea() > 0.0);
|
|
}
|
|
|
|
/**
|
|
* Returns the bounds of this path
|
|
*/
|
|
public Rectangle2D getPathBounds()
|
|
{
|
|
double xmin;
|
|
double xmax;
|
|
double ymin;
|
|
double ymax;
|
|
xmin = xmax = P1.getX();
|
|
ymin = ymax = P1.getY();
|
|
|
|
Segment v = this;
|
|
do
|
|
{
|
|
Rectangle2D r = v.getBounds();
|
|
xmin = Math.min(r.getMinX(), xmin);
|
|
ymin = Math.min(r.getMinY(), ymin);
|
|
xmax = Math.max(r.getMaxX(), xmax);
|
|
ymax = Math.max(r.getMaxY(), ymax);
|
|
v = v.next;
|
|
}
|
|
while (v != this);
|
|
|
|
return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
|
|
}
|
|
|
|
/**
|
|
* Calculates twice the signed area of the path;
|
|
*/
|
|
double getSignedArea()
|
|
{
|
|
Segment s;
|
|
double area = 0.0;
|
|
|
|
s = this;
|
|
do
|
|
{
|
|
area += s.curveArea();
|
|
|
|
area += s.P1.getX() * s.next.P1.getY()
|
|
- s.P1.getY() * s.next.P1.getX();
|
|
s = s.next;
|
|
}
|
|
while (s != this);
|
|
|
|
return area;
|
|
}
|
|
|
|
/**
|
|
* Reverses the orientation of the whole polygon
|
|
*/
|
|
void reverseAll()
|
|
{
|
|
reverseCoords();
|
|
Segment v = next;
|
|
Segment former = this;
|
|
while (v != this)
|
|
{
|
|
v.reverseCoords();
|
|
Segment vnext = v.next;
|
|
v.next = former;
|
|
former = v;
|
|
v = vnext;
|
|
}
|
|
next = former;
|
|
}
|
|
|
|
/**
|
|
* Inserts a Segment after this one
|
|
*/
|
|
void insert(Segment v)
|
|
{
|
|
Segment n = next;
|
|
next = v;
|
|
v.next = n;
|
|
}
|
|
|
|
/**
|
|
* Returns if this segment path is polygonal
|
|
*/
|
|
boolean isPolygonal()
|
|
{
|
|
Segment v = this;
|
|
do
|
|
{
|
|
if (! (v instanceof LineSegment))
|
|
return false;
|
|
v = v.next;
|
|
}
|
|
while (v != this);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Clones this path
|
|
*/
|
|
Segment cloneSegmentList() throws CloneNotSupportedException
|
|
{
|
|
Vector<Segment> list = new Vector<Segment>();
|
|
Segment v = next;
|
|
|
|
while (v != this)
|
|
{
|
|
list.add(v);
|
|
v = v.next;
|
|
}
|
|
|
|
Segment clone = (Segment) this.clone();
|
|
v = clone;
|
|
for (int i = 0; i < list.size(); i++)
|
|
{
|
|
clone.next = (Segment) list.elementAt(i).clone();
|
|
clone = clone.next;
|
|
}
|
|
clone.next = v;
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Creates a node between this segment and segment b
|
|
* at the given intersection
|
|
* @return the number of nodes created (0 or 1)
|
|
*/
|
|
int createNode(Segment b, Intersection i)
|
|
{
|
|
Point2D p = i.p;
|
|
if ((pointEquals(P1, p) || pointEquals(P2, p))
|
|
&& (pointEquals(b.P1, p) || pointEquals(b.P2, p)))
|
|
return 0;
|
|
|
|
subdivideInsert(i.ta);
|
|
b.subdivideInsert(i.tb);
|
|
|
|
// snap points
|
|
b.P2 = b.next.P1 = P2 = next.P1 = i.p;
|
|
|
|
node = b.next;
|
|
b.node = next;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Creates multiple nodes from a list of intersections,
|
|
* This must be done in the order of ascending parameters,
|
|
* and the parameters must be recalculated in accordance
|
|
* with each split.
|
|
* @return the number of nodes created
|
|
*/
|
|
protected int createNodes(Segment b, Intersection[] x)
|
|
{
|
|
Vector<Intersection> v = new Vector<Intersection>();
|
|
for (int i = 0; i < x.length; i++)
|
|
{
|
|
Point2D p = x[i].p;
|
|
if (! ((pointEquals(P1, p) || pointEquals(P2, p))
|
|
&& (pointEquals(b.P1, p) || pointEquals(b.P2, p))))
|
|
v.add(x[i]);
|
|
}
|
|
|
|
int nNodes = v.size();
|
|
Intersection[] A = new Intersection[nNodes];
|
|
Intersection[] B = new Intersection[nNodes];
|
|
for (int i = 0; i < nNodes; i++)
|
|
A[i] = B[i] = v.elementAt(i);
|
|
|
|
// Create two lists sorted by the parameter
|
|
// Bubble sort, OK I suppose, since the number of intersections
|
|
// cannot be larger than 9 (cubic-cubic worst case) anyway
|
|
for (int i = 0; i < nNodes - 1; i++)
|
|
{
|
|
for (int j = i + 1; j < nNodes; j++)
|
|
{
|
|
if (A[i].ta > A[j].ta)
|
|
{
|
|
Intersection swap = A[i];
|
|
A[i] = A[j];
|
|
A[j] = swap;
|
|
}
|
|
if (B[i].tb > B[j].tb)
|
|
{
|
|
Intersection swap = B[i];
|
|
B[i] = B[j];
|
|
B[j] = swap;
|
|
}
|
|
}
|
|
}
|
|
// subdivide a
|
|
Segment s = this;
|
|
for (int i = 0; i < nNodes; i++)
|
|
{
|
|
s.subdivideInsert(A[i].ta);
|
|
|
|
// renormalize the parameters
|
|
for (int j = i + 1; j < nNodes; j++)
|
|
A[j].ta = (A[j].ta - A[i].ta) / (1.0 - A[i].ta);
|
|
|
|
A[i].seg = s;
|
|
s = s.next;
|
|
}
|
|
|
|
// subdivide b, set nodes
|
|
s = b;
|
|
for (int i = 0; i < nNodes; i++)
|
|
{
|
|
s.subdivideInsert(B[i].tb);
|
|
|
|
for (int j = i + 1; j < nNodes; j++)
|
|
B[j].tb = (B[j].tb - B[i].tb) / (1.0 - B[i].tb);
|
|
|
|
// set nodes
|
|
B[i].seg.node = s.next; // node a -> b
|
|
s.node = B[i].seg.next; // node b -> a
|
|
|
|
// snap points
|
|
B[i].seg.P2 = B[i].seg.next.P1 = s.P2 = s.next.P1 = B[i].p;
|
|
s = s.next;
|
|
}
|
|
return nNodes;
|
|
}
|
|
|
|
/**
|
|
* Determines if two paths are equal.
|
|
* Colinear line segments are ignored in the comparison.
|
|
*/
|
|
boolean pathEquals(Segment B)
|
|
{
|
|
if (! getPathBounds().equals(B.getPathBounds()))
|
|
return false;
|
|
|
|
Segment startA = getTopLeft();
|
|
Segment startB = B.getTopLeft();
|
|
Segment a = startA;
|
|
Segment b = startB;
|
|
do
|
|
{
|
|
if (! a.equals(b))
|
|
return false;
|
|
|
|
if (a instanceof LineSegment)
|
|
a = ((LineSegment) a).lastCoLinear();
|
|
if (b instanceof LineSegment)
|
|
b = ((LineSegment) b).lastCoLinear();
|
|
|
|
a = a.next;
|
|
b = b.next;
|
|
}
|
|
while (a != startA && b != startB);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Return the segment with the top-leftmost first point
|
|
*/
|
|
Segment getTopLeft()
|
|
{
|
|
Segment v = this;
|
|
Segment tl = this;
|
|
do
|
|
{
|
|
if (v.P1.getY() < tl.P1.getY())
|
|
tl = v;
|
|
else if (v.P1.getY() == tl.P1.getY())
|
|
{
|
|
if (v.P1.getX() < tl.P1.getX())
|
|
tl = v;
|
|
}
|
|
v = v.next;
|
|
}
|
|
while (v != this);
|
|
return tl;
|
|
}
|
|
|
|
/**
|
|
* Returns if the path has a segment outside a shape
|
|
*/
|
|
boolean isSegmentOutside(Shape shape)
|
|
{
|
|
return ! shape.contains(getMidPoint());
|
|
}
|
|
} // class Segment
|
|
|
|
private class LineSegment extends Segment
|
|
{
|
|
public LineSegment(double x1, double y1, double x2, double y2)
|
|
{
|
|
super();
|
|
P1 = new Point2D.Double(x1, y1);
|
|
P2 = new Point2D.Double(x2, y2);
|
|
}
|
|
|
|
public LineSegment(Point2D p1, Point2D p2)
|
|
{
|
|
super();
|
|
P1 = (Point2D) p1.clone();
|
|
P2 = (Point2D) p2.clone();
|
|
}
|
|
|
|
/**
|
|
* Clones this segment
|
|
*/
|
|
public Object clone()
|
|
{
|
|
return new LineSegment(P1, P2);
|
|
}
|
|
|
|
/**
|
|
* Transforms the segment
|
|
*/
|
|
void transform(AffineTransform at)
|
|
{
|
|
P1 = at.transform(P1, null);
|
|
P2 = at.transform(P2, null);
|
|
}
|
|
|
|
/**
|
|
* Swap start and end points
|
|
*/
|
|
void reverseCoords()
|
|
{
|
|
Point2D p = P1;
|
|
P1 = P2;
|
|
P2 = p;
|
|
}
|
|
|
|
/**
|
|
* Returns the segment's midpoint
|
|
*/
|
|
Point2D getMidPoint()
|
|
{
|
|
return (new Point2D.Double(0.5 * (P1.getX() + P2.getX()),
|
|
0.5 * (P1.getY() + P2.getY())));
|
|
}
|
|
|
|
/**
|
|
* Returns twice the area of a curve, relative the P1-P2 line
|
|
* Obviously, a line does not enclose any area besides the line
|
|
*/
|
|
double curveArea()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the PathIterator type of a segment
|
|
*/
|
|
int getType()
|
|
{
|
|
return (PathIterator.SEG_LINETO);
|
|
}
|
|
|
|
/**
|
|
* Subdivides the segment at parametric value t, inserting
|
|
* the new segment into the linked list after this,
|
|
* such that this becomes [0,t] and this.next becomes [t,1]
|
|
*/
|
|
void subdivideInsert(double t)
|
|
{
|
|
Point2D p = new Point2D.Double((P2.getX() - P1.getX()) * t + P1.getX(),
|
|
(P2.getY() - P1.getY()) * t + P1.getY());
|
|
insert(new LineSegment(p, P2));
|
|
P2 = p;
|
|
next.node = node;
|
|
node = null;
|
|
}
|
|
|
|
/**
|
|
* Determines if two line segments are strictly colinear
|
|
*/
|
|
boolean isCoLinear(LineSegment b)
|
|
{
|
|
double x1 = P1.getX();
|
|
double y1 = P1.getY();
|
|
double x2 = P2.getX();
|
|
double y2 = P2.getY();
|
|
double x3 = b.P1.getX();
|
|
double y3 = b.P1.getY();
|
|
double x4 = b.P2.getX();
|
|
double y4 = b.P2.getY();
|
|
|
|
if ((y1 - y3) * (x4 - x3) - (x1 - x3) * (y4 - y3) != 0.0)
|
|
return false;
|
|
|
|
return ((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) == 0.0);
|
|
}
|
|
|
|
/**
|
|
* Return the last segment colinear with this one.
|
|
* Used in comparing paths.
|
|
*/
|
|
Segment lastCoLinear()
|
|
{
|
|
Segment prev = this;
|
|
Segment v = next;
|
|
|
|
while (v instanceof LineSegment)
|
|
{
|
|
if (isCoLinear((LineSegment) v))
|
|
{
|
|
prev = v;
|
|
v = v.next;
|
|
}
|
|
else
|
|
return prev;
|
|
}
|
|
return prev;
|
|
}
|
|
|
|
/**
|
|
* Compare two segments.
|
|
* We must take into account that the lines may be broken into colinear
|
|
* subsegments and ignore them.
|
|
*/
|
|
boolean equals(Segment b)
|
|
{
|
|
if (! (b instanceof LineSegment))
|
|
return false;
|
|
Point2D p1 = P1;
|
|
Point2D p3 = b.P1;
|
|
|
|
if (! p1.equals(p3))
|
|
return false;
|
|
|
|
Point2D p2 = lastCoLinear().P2;
|
|
Point2D p4 = ((LineSegment) b).lastCoLinear().P2;
|
|
return (p2.equals(p4));
|
|
}
|
|
|
|
/**
|
|
* Returns a line segment
|
|
*/
|
|
int pathIteratorFormat(double[] coords)
|
|
{
|
|
coords[0] = P2.getX();
|
|
coords[1] = P2.getY();
|
|
return (PathIterator.SEG_LINETO);
|
|
}
|
|
|
|
/**
|
|
* Returns if the line has intersections.
|
|
*/
|
|
boolean hasIntersections(Segment b)
|
|
{
|
|
if (b instanceof LineSegment)
|
|
return (linesIntersect(this, (LineSegment) b) != null);
|
|
|
|
if (b instanceof QuadSegment)
|
|
return (lineQuadIntersect(this, (QuadSegment) b) != null);
|
|
|
|
if (b instanceof CubicSegment)
|
|
return (lineCubicIntersect(this, (CubicSegment) b) != null);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Splits intersections into nodes,
|
|
* This one handles line-line, line-quadratic, line-cubic
|
|
*/
|
|
int splitIntersections(Segment b)
|
|
{
|
|
if (b instanceof LineSegment)
|
|
{
|
|
Intersection i = linesIntersect(this, (LineSegment) b);
|
|
|
|
if (i == null)
|
|
return 0;
|
|
|
|
return createNode(b, i);
|
|
}
|
|
|
|
Intersection[] x = null;
|
|
|
|
if (b instanceof QuadSegment)
|
|
x = lineQuadIntersect(this, (QuadSegment) b);
|
|
|
|
if (b instanceof CubicSegment)
|
|
x = lineCubicIntersect(this, (CubicSegment) b);
|
|
|
|
if (x == null)
|
|
return 0;
|
|
|
|
if (x.length == 1)
|
|
return createNode(b, (Intersection) x[0]);
|
|
|
|
return createNodes(b, x);
|
|
}
|
|
|
|
/**
|
|
* Returns the bounding box of this segment
|
|
*/
|
|
Rectangle2D getBounds()
|
|
{
|
|
return (new Rectangle2D.Double(Math.min(P1.getX(), P2.getX()),
|
|
Math.min(P1.getY(), P2.getY()),
|
|
Math.abs(P1.getX() - P2.getX()),
|
|
Math.abs(P1.getY() - P2.getY())));
|
|
}
|
|
|
|
/**
|
|
* Returns the number of intersections on the positive X axis,
|
|
* with the origin at (x,y), used for contains()-testing
|
|
*/
|
|
int rayCrossing(double x, double y)
|
|
{
|
|
double x0 = P1.getX() - x;
|
|
double y0 = P1.getY() - y;
|
|
double x1 = P2.getX() - x;
|
|
double y1 = P2.getY() - y;
|
|
|
|
if (y0 * y1 > 0)
|
|
return 0;
|
|
|
|
if (x0 < 0 && x1 < 0)
|
|
return 0;
|
|
|
|
if (y0 == 0.0)
|
|
y0 -= EPSILON;
|
|
|
|
if (y1 == 0.0)
|
|
y1 -= EPSILON;
|
|
|
|
if (Line2D.linesIntersect(x0, y0, x1, y1,
|
|
EPSILON, 0.0, Double.MAX_VALUE, 0.0))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
} // class LineSegment
|
|
|
|
/**
|
|
* Quadratic Bezier curve segment
|
|
*
|
|
* Note: Most peers don't support quadratics directly, so it might make
|
|
* sense to represent them as cubics internally and just be done with it.
|
|
* I think we should be peer-agnostic, however, and stay faithful to the
|
|
* input geometry types as far as possible.
|
|
*/
|
|
private class QuadSegment extends Segment
|
|
{
|
|
Point2D cp; // control point
|
|
|
|
/**
|
|
* Constructor, takes the coordinates of the start, control,
|
|
* and end point, respectively.
|
|
*/
|
|
QuadSegment(double x1, double y1, double cx, double cy, double x2,
|
|
double y2)
|
|
{
|
|
super();
|
|
P1 = new Point2D.Double(x1, y1);
|
|
P2 = new Point2D.Double(x2, y2);
|
|
cp = new Point2D.Double(cx, cy);
|
|
}
|
|
|
|
/**
|
|
* Clones this segment
|
|
*/
|
|
public Object clone()
|
|
{
|
|
return new QuadSegment(P1.getX(), P1.getY(), cp.getX(), cp.getY(),
|
|
P2.getX(), P2.getY());
|
|
}
|
|
|
|
/**
|
|
* Returns twice the area of a curve, relative the P1-P2 line
|
|
*
|
|
* The area formula can be derived by using Green's formula in the
|
|
* plane on the parametric form of the bezier.
|
|
*/
|
|
double curveArea()
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp.getX();
|
|
double y1 = cp.getY();
|
|
double x2 = P2.getX();
|
|
double y2 = P2.getY();
|
|
|
|
double P = (y2 - 2 * y1 + y0);
|
|
double Q = 2 * (y1 - y0);
|
|
|
|
double A = (x2 - 2 * x1 + x0);
|
|
double B = 2 * (x1 - x0);
|
|
|
|
double area = (B * P - A * Q) / 3.0;
|
|
return (area);
|
|
}
|
|
|
|
/**
|
|
* Compare two segments.
|
|
*/
|
|
boolean equals(Segment b)
|
|
{
|
|
if (! (b instanceof QuadSegment))
|
|
return false;
|
|
|
|
return (P1.equals(b.P1) && cp.equals(((QuadSegment) b).cp)
|
|
&& P2.equals(b.P2));
|
|
}
|
|
|
|
/**
|
|
* Returns a Point2D corresponding to the parametric value t
|
|
* of the curve
|
|
*/
|
|
Point2D evaluatePoint(double t)
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp.getX();
|
|
double y1 = cp.getY();
|
|
double x2 = P2.getX();
|
|
double y2 = P2.getY();
|
|
|
|
return new Point2D.Double(t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0)
|
|
+ x0,
|
|
t * t * (y2 - 2 * y1 + y0) + 2 * t * (y1 - y0)
|
|
+ y0);
|
|
}
|
|
|
|
/**
|
|
* Returns the bounding box of this segment
|
|
*/
|
|
Rectangle2D getBounds()
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp.getX();
|
|
double y1 = cp.getY();
|
|
double x2 = P2.getX();
|
|
double y2 = P2.getY();
|
|
double r0;
|
|
double r1;
|
|
|
|
double xmax = Math.max(x0, x2);
|
|
double ymax = Math.max(y0, y2);
|
|
double xmin = Math.min(x0, x2);
|
|
double ymin = Math.min(y0, y2);
|
|
|
|
r0 = 2 * (y1 - y0);
|
|
r1 = 2 * (y2 - 2 * y1 + y0);
|
|
if (r1 != 0.0)
|
|
{
|
|
double t = -r0 / r1;
|
|
if (t > 0.0 && t < 1.0)
|
|
{
|
|
double y = evaluatePoint(t).getY();
|
|
ymax = Math.max(y, ymax);
|
|
ymin = Math.min(y, ymin);
|
|
}
|
|
}
|
|
r0 = 2 * (x1 - x0);
|
|
r1 = 2 * (x2 - 2 * x1 + x0);
|
|
if (r1 != 0.0)
|
|
{
|
|
double t = -r0 / r1;
|
|
if (t > 0.0 && t < 1.0)
|
|
{
|
|
double x = evaluatePoint(t).getY();
|
|
xmax = Math.max(x, xmax);
|
|
xmin = Math.min(x, xmin);
|
|
}
|
|
}
|
|
|
|
return (new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin));
|
|
}
|
|
|
|
/**
|
|
* Returns a cubic segment corresponding to this curve
|
|
*/
|
|
CubicSegment getCubicSegment()
|
|
{
|
|
double x1 = P1.getX() + 2.0 * (cp.getX() - P1.getX()) / 3.0;
|
|
double y1 = P1.getY() + 2.0 * (cp.getY() - P1.getY()) / 3.0;
|
|
double x2 = cp.getX() + (P2.getX() - cp.getX()) / 3.0;
|
|
double y2 = cp.getY() + (P2.getY() - cp.getY()) / 3.0;
|
|
|
|
return new CubicSegment(P1.getX(), P1.getY(), x1, y1, x2, y2, P2.getX(),
|
|
P2.getY());
|
|
}
|
|
|
|
/**
|
|
* Returns the segment's midpoint
|
|
*/
|
|
Point2D getMidPoint()
|
|
{
|
|
return evaluatePoint(0.5);
|
|
}
|
|
|
|
/**
|
|
* Returns the PathIterator type of a segment
|
|
*/
|
|
int getType()
|
|
{
|
|
return (PathIterator.SEG_QUADTO);
|
|
}
|
|
|
|
/**
|
|
* Returns the PathIterator coords of a segment
|
|
*/
|
|
int pathIteratorFormat(double[] coords)
|
|
{
|
|
coords[0] = cp.getX();
|
|
coords[1] = cp.getY();
|
|
coords[2] = P2.getX();
|
|
coords[3] = P2.getY();
|
|
return (PathIterator.SEG_QUADTO);
|
|
}
|
|
|
|
/**
|
|
* Returns the number of intersections on the positive X axis,
|
|
* with the origin at (x,y), used for contains()-testing
|
|
*/
|
|
int rayCrossing(double x, double y)
|
|
{
|
|
double x0 = P1.getX() - x;
|
|
double y0 = P1.getY() - y;
|
|
double x1 = cp.getX() - x;
|
|
double y1 = cp.getY() - y;
|
|
double x2 = P2.getX() - x;
|
|
double y2 = P2.getY() - y;
|
|
double[] r = new double[3];
|
|
int nRoots;
|
|
int nCrossings = 0;
|
|
|
|
/* check if curve may intersect X+ axis. */
|
|
if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0) && (y0 * y1 <= 0 || y1 * y2 <= 0))
|
|
{
|
|
if (y0 == 0.0)
|
|
y0 -= EPSILON;
|
|
if (y2 == 0.0)
|
|
y2 -= EPSILON;
|
|
|
|
r[0] = y0;
|
|
r[1] = 2 * (y1 - y0);
|
|
r[2] = (y2 - 2 * y1 + y0);
|
|
|
|
nRoots = QuadCurve2D.solveQuadratic(r);
|
|
for (int i = 0; i < nRoots; i++)
|
|
if (r[i] > 0.0f && r[i] < 1.0f)
|
|
{
|
|
double t = r[i];
|
|
if (t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) + x0 > 0.0)
|
|
nCrossings++;
|
|
}
|
|
}
|
|
return nCrossings;
|
|
}
|
|
|
|
/**
|
|
* Swap start and end points
|
|
*/
|
|
void reverseCoords()
|
|
{
|
|
Point2D temp = P1;
|
|
P1 = P2;
|
|
P2 = temp;
|
|
}
|
|
|
|
/**
|
|
* Splits intersections into nodes,
|
|
* This one handles quadratic-quadratic only,
|
|
* Quadratic-line is passed on to the LineSegment class,
|
|
* Quadratic-cubic is passed on to the CubicSegment class
|
|
*/
|
|
int splitIntersections(Segment b)
|
|
{
|
|
if (b instanceof LineSegment)
|
|
return (b.splitIntersections(this));
|
|
|
|
if (b instanceof CubicSegment)
|
|
return (b.splitIntersections(this));
|
|
|
|
if (b instanceof QuadSegment)
|
|
{
|
|
// Use the cubic-cubic intersection routine for quads as well,
|
|
// Since a quadratic can be exactly described as a cubic, this
|
|
// should not be a problem;
|
|
// The recursion depth will be the same in any case.
|
|
Intersection[] x = cubicCubicIntersect(getCubicSegment(),
|
|
((QuadSegment) b)
|
|
.getCubicSegment());
|
|
if (x == null)
|
|
return 0;
|
|
|
|
if (x.length == 1)
|
|
return createNode(b, (Intersection) x[0]);
|
|
|
|
return createNodes(b, x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Subdivides the segment at parametric value t, inserting
|
|
* the new segment into the linked list after this,
|
|
* such that this becomes [0,t] and this.next becomes [t,1]
|
|
*/
|
|
void subdivideInsert(double t)
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp.getX();
|
|
double y1 = cp.getY();
|
|
double x2 = P2.getX();
|
|
double y2 = P2.getY();
|
|
|
|
double p10x = x0 + t * (x1 - x0);
|
|
double p10y = y0 + t * (y1 - y0);
|
|
double p11x = x1 + t * (x2 - x1);
|
|
double p11y = y1 + t * (y2 - y1);
|
|
double p20x = p10x + t * (p11x - p10x);
|
|
double p20y = p10y + t * (p11y - p10y);
|
|
|
|
insert(new QuadSegment(p20x, p20y, p11x, p11y, x2, y2));
|
|
P2 = next.P1;
|
|
cp.setLocation(p10x, p10y);
|
|
|
|
next.node = node;
|
|
node = null;
|
|
}
|
|
|
|
/**
|
|
* Transforms the segment
|
|
*/
|
|
void transform(AffineTransform at)
|
|
{
|
|
P1 = at.transform(P1, null);
|
|
P2 = at.transform(P2, null);
|
|
cp = at.transform(cp, null);
|
|
}
|
|
} // class QuadSegment
|
|
|
|
/**
|
|
* Cubic Bezier curve segment
|
|
*/
|
|
private class CubicSegment extends Segment
|
|
{
|
|
Point2D cp1; // control points
|
|
Point2D cp2; // control points
|
|
|
|
/**
|
|
* Constructor - takes coordinates of the starting point,
|
|
* first control point, second control point and end point,
|
|
* respecively.
|
|
*/
|
|
public CubicSegment(double x1, double y1, double c1x, double c1y,
|
|
double c2x, double c2y, double x2, double y2)
|
|
{
|
|
super();
|
|
P1 = new Point2D.Double(x1, y1);
|
|
P2 = new Point2D.Double(x2, y2);
|
|
cp1 = new Point2D.Double(c1x, c1y);
|
|
cp2 = new Point2D.Double(c2x, c2y);
|
|
}
|
|
|
|
/**
|
|
* Clones this segment
|
|
*/
|
|
public Object clone()
|
|
{
|
|
return new CubicSegment(P1.getX(), P1.getY(), cp1.getX(), cp1.getY(),
|
|
cp2.getX(), cp2.getY(), P2.getX(), P2.getY());
|
|
}
|
|
|
|
/**
|
|
* Returns twice the area of a curve, relative the P1-P2 line
|
|
*
|
|
* The area formula can be derived by using Green's formula in the
|
|
* plane on the parametric form of the bezier.
|
|
*/
|
|
double curveArea()
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp1.getX();
|
|
double y1 = cp1.getY();
|
|
double x2 = cp2.getX();
|
|
double y2 = cp2.getY();
|
|
double x3 = P2.getX();
|
|
double y3 = P2.getY();
|
|
|
|
double P = y3 - 3 * y2 + 3 * y1 - y0;
|
|
double Q = 3 * (y2 + y0 - 2 * y1);
|
|
double R = 3 * (y1 - y0);
|
|
|
|
double A = x3 - 3 * x2 + 3 * x1 - x0;
|
|
double B = 3 * (x2 + x0 - 2 * x1);
|
|
double C = 3 * (x1 - x0);
|
|
|
|
double area = (B * P - A * Q) / 5.0 + (C * P - A * R) / 2.0
|
|
+ (C * Q - B * R) / 3.0;
|
|
|
|
return (area);
|
|
}
|
|
|
|
/**
|
|
* Compare two segments.
|
|
*/
|
|
boolean equals(Segment b)
|
|
{
|
|
if (! (b instanceof CubicSegment))
|
|
return false;
|
|
|
|
return (P1.equals(b.P1) && cp1.equals(((CubicSegment) b).cp1)
|
|
&& cp2.equals(((CubicSegment) b).cp2) && P2.equals(b.P2));
|
|
}
|
|
|
|
/**
|
|
* Returns a Point2D corresponding to the parametric value t
|
|
* of the curve
|
|
*/
|
|
Point2D evaluatePoint(double t)
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp1.getX();
|
|
double y1 = cp1.getY();
|
|
double x2 = cp2.getX();
|
|
double y2 = cp2.getY();
|
|
double x3 = P2.getX();
|
|
double y3 = P2.getY();
|
|
|
|
return new Point2D.Double(-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
|
|
+ 3 * t * t * (x0 - 2 * x1 + x2)
|
|
+ 3 * t * (x1 - x0) + x0,
|
|
-(t * t * t) * (y0 - 3 * y1 + 3 * y2 - y3)
|
|
+ 3 * t * t * (y0 - 2 * y1 + y2)
|
|
+ 3 * t * (y1 - y0) + y0);
|
|
}
|
|
|
|
/**
|
|
* Returns the bounding box of this segment
|
|
*/
|
|
Rectangle2D getBounds()
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp1.getX();
|
|
double y1 = cp1.getY();
|
|
double x2 = cp2.getX();
|
|
double y2 = cp2.getY();
|
|
double x3 = P2.getX();
|
|
double y3 = P2.getY();
|
|
double[] r = new double[3];
|
|
|
|
double xmax = Math.max(x0, x3);
|
|
double ymax = Math.max(y0, y3);
|
|
double xmin = Math.min(x0, x3);
|
|
double ymin = Math.min(y0, y3);
|
|
|
|
r[0] = 3 * (y1 - y0);
|
|
r[1] = 6.0 * (y2 + y0 - 2 * y1);
|
|
r[2] = 3.0 * (y3 - 3 * y2 + 3 * y1 - y0);
|
|
|
|
int n = QuadCurve2D.solveQuadratic(r);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
double t = r[i];
|
|
if (t > 0 && t < 1.0)
|
|
{
|
|
double y = evaluatePoint(t).getY();
|
|
ymax = Math.max(y, ymax);
|
|
ymin = Math.min(y, ymin);
|
|
}
|
|
}
|
|
|
|
r[0] = 3 * (x1 - x0);
|
|
r[1] = 6.0 * (x2 + x0 - 2 * x1);
|
|
r[2] = 3.0 * (x3 - 3 * x2 + 3 * x1 - x0);
|
|
n = QuadCurve2D.solveQuadratic(r);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
double t = r[i];
|
|
if (t > 0 && t < 1.0)
|
|
{
|
|
double x = evaluatePoint(t).getX();
|
|
xmax = Math.max(x, xmax);
|
|
xmin = Math.min(x, xmin);
|
|
}
|
|
}
|
|
return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
|
|
}
|
|
|
|
/**
|
|
* Returns a CubicCurve2D object corresponding to this segment.
|
|
*/
|
|
CubicCurve2D getCubicCurve2D()
|
|
{
|
|
return new CubicCurve2D.Double(P1.getX(), P1.getY(), cp1.getX(),
|
|
cp1.getY(), cp2.getX(), cp2.getY(),
|
|
P2.getX(), P2.getY());
|
|
}
|
|
|
|
/**
|
|
* Returns the parametric points of self-intersection if the cubic
|
|
* is self-intersecting, null otherwise.
|
|
*/
|
|
double[] getLoop()
|
|
{
|
|
double x0 = P1.getX();
|
|
double y0 = P1.getY();
|
|
double x1 = cp1.getX();
|
|
double y1 = cp1.getY();
|
|
double x2 = cp2.getX();
|
|
double y2 = cp2.getY();
|
|
double x3 = P2.getX();
|
|
double y3 = P2.getY();
|
|
double[] r = new double[4];
|
|
double k;
|
|
double R;
|
|
double T;
|
|
double A;
|
|
double B;
|
|
double[] results = new double[2];
|
|
|
|
R = x3 - 3 * x2 + 3 * x1 - x0;
|
|
T = y3 - 3 * y2 + 3 * y1 - y0;
|
|
|
|
// A qudratic
|
|
if (R == 0.0 && T == 0.0)
|
|
return null;
|
|
|
|
// true cubic
|
|
if (R != 0.0 && T != 0.0)
|
|
{
|
|
A = 3 * (x2 + x0 - 2 * x1) / R;
|
|
B = 3 * (x1 - x0) / R;
|
|
|
|
double P = 3 * (y2 + y0 - 2 * y1) / T;
|
|
double Q = 3 * (y1 - y0) / T;
|
|
|
|
if (A == P || Q == B)
|
|
return null;
|
|
|
|
k = (Q - B) / (A - P);
|
|
}
|
|
else
|
|
{
|
|
if (R == 0.0)
|
|
{
|
|
// quadratic in x
|
|
k = -(3 * (x1 - x0)) / (3 * (x2 + x0 - 2 * x1));
|
|
A = 3 * (y2 + y0 - 2 * y1) / T;
|
|
B = 3 * (y1 - y0) / T;
|
|
}
|
|
else
|
|
{
|
|
// quadratic in y
|
|
k = -(3 * (y1 - y0)) / (3 * (y2 + y0 - 2 * y1));
|
|
A = 3 * (x2 + x0 - 2 * x1) / R;
|
|
B = 3 * (x1 - x0) / R;
|
|
}
|
|
}
|
|
|
|
r[0] = -k * k * k - A * k * k - B * k;
|
|
r[1] = 3 * k * k + 2 * k * A + 2 * B;
|
|
r[2] = -3 * k;
|
|
r[3] = 2;
|
|
|
|
int n = CubicCurve2D.solveCubic(r);
|
|
if (n != 3)
|
|
return null;
|
|
|
|
// sort r
|
|
double t;
|
|
for (int i = 0; i < 2; i++)
|
|
for (int j = i + 1; j < 3; j++)
|
|
if (r[j] < r[i])
|
|
{
|
|
t = r[i];
|
|
r[i] = r[j];
|
|
r[j] = t;
|
|
}
|
|
|
|
if (Math.abs(r[0] + r[2] - k) < 1E-13)
|
|
if (r[0] >= 0.0 && r[0] <= 1.0 && r[2] >= 0.0 && r[2] <= 1.0)
|
|
if (evaluatePoint(r[0]).distance(evaluatePoint(r[2])) < PE_EPSILON * 10)
|
|
{ // we snap the points anyway
|
|
results[0] = r[0];
|
|
results[1] = r[2];
|
|
return (results);
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns the segment's midpoint
|
|
*/
|
|
Point2D getMidPoint()
|
|
{
|
|
return evaluatePoint(0.5);
|
|
}
|
|
|
|
/**
|
|
* Returns the PathIterator type of a segment
|
|
*/
|
|
int getType()
|
|
{
|
|
return (PathIterator.SEG_CUBICTO);
|
|
}
|
|
|
|
/**
|
|
* Returns the PathIterator coords of a segment
|
|
*/
|
|
int pathIteratorFormat(double[] coords)
|
|
{
|
|
coords[0] = cp1.getX();
|
|
coords[1] = cp1.getY();
|
|
coords[2] = cp2.getX();
|
|
coords[3] = cp2.getY();
|
|
coords[4] = P2.getX();
|
|
coords[5] = P2.getY();
|
|
return (PathIterator.SEG_CUBICTO);
|
|
}
|
|
|
|
/**
|
|
* Returns the number of intersections on the positive X axis,
|
|
* with the origin at (x,y), used for contains()-testing
|
|
*/
|
|
int rayCrossing(double x, double y)
|
|
{
|
|
double x0 = P1.getX() - x;
|
|
double y0 = P1.getY() - y;
|
|
double x1 = cp1.getX() - x;
|
|
double y1 = cp1.getY() - y;
|
|
double x2 = cp2.getX() - x;
|
|
double y2 = cp2.getY() - y;
|
|
double x3 = P2.getX() - x;
|
|
double y3 = P2.getY() - y;
|
|
double[] r = new double[4];
|
|
int nRoots;
|
|
int nCrossings = 0;
|
|
|
|
/* check if curve may intersect X+ axis. */
|
|
if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
|
|
&& (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
|
|
{
|
|
if (y0 == 0.0)
|
|
y0 -= EPSILON;
|
|
if (y3 == 0.0)
|
|
y3 -= EPSILON;
|
|
|
|
r[0] = y0;
|
|
r[1] = 3 * (y1 - y0);
|
|
r[2] = 3 * (y2 + y0 - 2 * y1);
|
|
r[3] = y3 - 3 * y2 + 3 * y1 - y0;
|
|
|
|
if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
|
|
for (int i = 0; i < nRoots; i++)
|
|
{
|
|
if (r[i] > 0.0 && r[i] < 1.0)
|
|
{
|
|
double t = r[i];
|
|
if (-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
|
|
+ 3 * t * t * (x0 - 2 * x1 + x2) + 3 * t * (x1 - x0)
|
|
+ x0 > 0.0)
|
|
nCrossings++;
|
|
}
|
|
}
|
|
}
|
|
return nCrossings;
|
|
}
|
|
|
|
/**
|
|
* Swap start and end points
|
|
*/
|
|
void reverseCoords()
|
|
{
|
|
Point2D p = P1;
|
|
P1 = P2;
|
|
P2 = p;
|
|
p = cp1; // swap control points
|
|
cp1 = cp2;
|
|
cp2 = p;
|
|
}
|
|
|
|
/**
|
|
* Splits intersections into nodes,
|
|
* This one handles cubic-cubic and cubic-quadratic intersections
|
|
*/
|
|
int splitIntersections(Segment b)
|
|
{
|
|
if (b instanceof LineSegment)
|
|
return (b.splitIntersections(this));
|
|
|
|
Intersection[] x = null;
|
|
|
|
if (b instanceof QuadSegment)
|
|
x = cubicCubicIntersect(this, ((QuadSegment) b).getCubicSegment());
|
|
|
|
if (b instanceof CubicSegment)
|
|
x = cubicCubicIntersect(this, (CubicSegment) b);
|
|
|
|
if (x == null)
|
|
return 0;
|
|
|
|
if (x.length == 1)
|
|
return createNode(b, x[0]);
|
|
|
|
return createNodes(b, x);
|
|
}
|
|
|
|
/**
|
|
* Subdivides the segment at parametric value t, inserting
|
|
* the new segment into the linked list after this,
|
|
* such that this becomes [0,t] and this.next becomes [t,1]
|
|
*/
|
|
void subdivideInsert(double t)
|
|
{
|
|
CubicSegment s = (CubicSegment) clone();
|
|
double p1x = (s.cp1.getX() - s.P1.getX()) * t + s.P1.getX();
|
|
double p1y = (s.cp1.getY() - s.P1.getY()) * t + s.P1.getY();
|
|
|
|
double px = (s.cp2.getX() - s.cp1.getX()) * t + s.cp1.getX();
|
|
double py = (s.cp2.getY() - s.cp1.getY()) * t + s.cp1.getY();
|
|
|
|
s.cp2.setLocation((s.P2.getX() - s.cp2.getX()) * t + s.cp2.getX(),
|
|
(s.P2.getY() - s.cp2.getY()) * t + s.cp2.getY());
|
|
|
|
s.cp1.setLocation((s.cp2.getX() - px) * t + px,
|
|
(s.cp2.getY() - py) * t + py);
|
|
|
|
double p2x = (px - p1x) * t + p1x;
|
|
double p2y = (py - p1y) * t + p1y;
|
|
|
|
double p3x = (s.cp1.getX() - p2x) * t + p2x;
|
|
double p3y = (s.cp1.getY() - p2y) * t + p2y;
|
|
s.P1.setLocation(p3x, p3y);
|
|
|
|
// insert new curve
|
|
insert(s);
|
|
|
|
// set this curve
|
|
cp1.setLocation(p1x, p1y);
|
|
cp2.setLocation(p2x, p2y);
|
|
P2 = s.P1;
|
|
next.node = node;
|
|
node = null;
|
|
}
|
|
|
|
/**
|
|
* Transforms the segment
|
|
*/
|
|
void transform(AffineTransform at)
|
|
{
|
|
P1 = at.transform(P1, null);
|
|
P2 = at.transform(P2, null);
|
|
cp1 = at.transform(cp1, null);
|
|
cp2 = at.transform(cp2, null);
|
|
}
|
|
} // class CubicSegment
|
|
} // class Area
|