mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-13 18:34:45 +00:00
993 lines
30 KiB
Java
993 lines
30 KiB
Java
/* GeneralPath.java -- represents a shape built from subpaths
|
|
Copyright (C) 2002, 2003, 2004, 2006 Free Software Foundation
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package java.awt.geom;
|
|
|
|
import java.awt.Rectangle;
|
|
import java.awt.Shape;
|
|
|
|
|
|
/**
|
|
* A general geometric path, consisting of any number of subpaths
|
|
* constructed out of straight lines and cubic or quadratic Bezier
|
|
* curves.
|
|
*
|
|
* <p>The inside of the curve is defined for drawing purposes by a winding
|
|
* rule. Either the WIND_EVEN_ODD or WIND_NON_ZERO winding rule can be chosen.
|
|
*
|
|
* <p><img src="doc-files/GeneralPath-1.png" width="300" height="210"
|
|
* alt="A drawing of a GeneralPath" />
|
|
* <p>The EVEN_ODD winding rule defines a point as inside a path if:
|
|
* A ray from the point towards infinity in an arbitrary direction
|
|
* intersects the path an odd number of times. Points <b>A</b> and
|
|
* <b>C</b> in the image are considered to be outside the path.
|
|
* (both intersect twice)
|
|
* Point <b>B</b> intersects once, and is inside.
|
|
*
|
|
* <p>The NON_ZERO winding rule defines a point as inside a path if:
|
|
* The path intersects the ray in an equal number of opposite directions.
|
|
* Point <b>A</b> in the image is outside (one intersection in the
|
|
* ’up’
|
|
* direction, one in the ’down’ direction) Point <b>B</b> in
|
|
* the image is inside (one intersection ’down’)
|
|
* Point <b>C</b> in the image is inside (two intersections in the
|
|
* ’down’ direction)
|
|
*
|
|
* @see Line2D
|
|
* @see CubicCurve2D
|
|
* @see QuadCurve2D
|
|
*
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
|
* @author Sven de Marothy (sven@physto.se)
|
|
*
|
|
* @since 1.2
|
|
*/
|
|
public final class GeneralPath implements Shape, Cloneable
|
|
{
|
|
/** Same constant as {@link PathIterator#WIND_EVEN_ODD}. */
|
|
public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD;
|
|
|
|
/** Same constant as {@link PathIterator#WIND_NON_ZERO}. */
|
|
public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO;
|
|
|
|
/** Initial size if not specified. */
|
|
private static final int INIT_SIZE = 10;
|
|
|
|
/** A big number, but not so big it can't survive a few float operations */
|
|
private static final double BIG_VALUE = Double.MAX_VALUE / 10.0;
|
|
|
|
/** The winding rule.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
int rule;
|
|
|
|
/**
|
|
* The path type in points. Note that xpoints[index] and ypoints[index] maps
|
|
* to types[index]; the control points of quad and cubic paths map as
|
|
* well but are ignored.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
byte[] types;
|
|
|
|
/**
|
|
* The list of all points seen. Since you can only append floats, it makes
|
|
* sense for these to be float[]. I have no idea why Sun didn't choose to
|
|
* allow a general path of double precision points.
|
|
* Note: Storing x and y coords seperately makes for a slower transforms,
|
|
* But it speeds up and simplifies box-intersection checking a lot.
|
|
* These are package-private to avoid accessor methods.
|
|
*/
|
|
float[] xpoints;
|
|
float[] ypoints;
|
|
|
|
/** The index of the most recent moveto point, or null. */
|
|
private int subpath = -1;
|
|
|
|
/** The next available index into points.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
int index;
|
|
|
|
/**
|
|
* Constructs a GeneralPath with the default (NON_ZERO)
|
|
* winding rule and initial capacity (20).
|
|
*/
|
|
public GeneralPath()
|
|
{
|
|
this(WIND_NON_ZERO, INIT_SIZE);
|
|
}
|
|
|
|
/**
|
|
* Constructs a GeneralPath with a specific winding rule
|
|
* and the default initial capacity (20).
|
|
* @param rule the winding rule ({@link #WIND_NON_ZERO} or
|
|
* {@link #WIND_EVEN_ODD})
|
|
*
|
|
* @throws IllegalArgumentException if <code>rule</code> is not one of the
|
|
* listed values.
|
|
*/
|
|
public GeneralPath(int rule)
|
|
{
|
|
this(rule, INIT_SIZE);
|
|
}
|
|
|
|
/**
|
|
* Constructs a GeneralPath with a specific winding rule
|
|
* and the initial capacity. The initial capacity should be
|
|
* the approximate number of path segments to be used.
|
|
* @param rule the winding rule ({@link #WIND_NON_ZERO} or
|
|
* {@link #WIND_EVEN_ODD})
|
|
* @param capacity the inital capacity, in path segments
|
|
*
|
|
* @throws IllegalArgumentException if <code>rule</code> is not one of the
|
|
* listed values.
|
|
*/
|
|
public GeneralPath(int rule, int capacity)
|
|
{
|
|
if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
|
|
throw new IllegalArgumentException();
|
|
this.rule = rule;
|
|
if (capacity < INIT_SIZE)
|
|
capacity = INIT_SIZE;
|
|
types = new byte[capacity];
|
|
xpoints = new float[capacity];
|
|
ypoints = new float[capacity];
|
|
}
|
|
|
|
/**
|
|
* Constructs a GeneralPath from an arbitrary shape object.
|
|
* The Shapes PathIterator path and winding rule will be used.
|
|
*
|
|
* @param s the shape (<code>null</code> not permitted).
|
|
*
|
|
* @throws NullPointerException if <code>shape</code> is <code>null</code>.
|
|
*/
|
|
public GeneralPath(Shape s)
|
|
{
|
|
types = new byte[INIT_SIZE];
|
|
xpoints = new float[INIT_SIZE];
|
|
ypoints = new float[INIT_SIZE];
|
|
PathIterator pi = s.getPathIterator(null);
|
|
setWindingRule(pi.getWindingRule());
|
|
append(pi, false);
|
|
}
|
|
|
|
/**
|
|
* Adds a new point to a path.
|
|
*
|
|
* @param x the x-coordinate.
|
|
* @param y the y-coordinate.
|
|
*/
|
|
public void moveTo(float x, float y)
|
|
{
|
|
subpath = index;
|
|
ensureSize(index + 1);
|
|
types[index] = PathIterator.SEG_MOVETO;
|
|
xpoints[index] = x;
|
|
ypoints[index++] = y;
|
|
}
|
|
|
|
/**
|
|
* Appends a straight line to the current path.
|
|
* @param x x coordinate of the line endpoint.
|
|
* @param y y coordinate of the line endpoint.
|
|
*/
|
|
public void lineTo(float x, float y)
|
|
{
|
|
ensureSize(index + 1);
|
|
types[index] = PathIterator.SEG_LINETO;
|
|
xpoints[index] = x;
|
|
ypoints[index++] = y;
|
|
}
|
|
|
|
/**
|
|
* Appends a quadratic Bezier curve to the current path.
|
|
* @param x1 x coordinate of the control point
|
|
* @param y1 y coordinate of the control point
|
|
* @param x2 x coordinate of the curve endpoint.
|
|
* @param y2 y coordinate of the curve endpoint.
|
|
*/
|
|
public void quadTo(float x1, float y1, float x2, float y2)
|
|
{
|
|
ensureSize(index + 2);
|
|
types[index] = PathIterator.SEG_QUADTO;
|
|
xpoints[index] = x1;
|
|
ypoints[index++] = y1;
|
|
xpoints[index] = x2;
|
|
ypoints[index++] = y2;
|
|
}
|
|
|
|
/**
|
|
* Appends a cubic Bezier curve to the current path.
|
|
* @param x1 x coordinate of the first control point
|
|
* @param y1 y coordinate of the first control point
|
|
* @param x2 x coordinate of the second control point
|
|
* @param y2 y coordinate of the second control point
|
|
* @param x3 x coordinate of the curve endpoint.
|
|
* @param y3 y coordinate of the curve endpoint.
|
|
*/
|
|
public void curveTo(float x1, float y1, float x2, float y2, float x3,
|
|
float y3)
|
|
{
|
|
ensureSize(index + 3);
|
|
types[index] = PathIterator.SEG_CUBICTO;
|
|
xpoints[index] = x1;
|
|
ypoints[index++] = y1;
|
|
xpoints[index] = x2;
|
|
ypoints[index++] = y2;
|
|
xpoints[index] = x3;
|
|
ypoints[index++] = y3;
|
|
}
|
|
|
|
/**
|
|
* Closes the current subpath by drawing a line
|
|
* back to the point of the last moveTo, unless the path is already closed.
|
|
*/
|
|
public void closePath()
|
|
{
|
|
if (index >= 1 && types[index - 1] == PathIterator.SEG_CLOSE)
|
|
return;
|
|
ensureSize(index + 1);
|
|
types[index] = PathIterator.SEG_CLOSE;
|
|
xpoints[index] = xpoints[subpath];
|
|
ypoints[index++] = ypoints[subpath];
|
|
}
|
|
|
|
/**
|
|
* Appends the segments of a Shape to the path. If <code>connect</code> is
|
|
* true, the new path segments are connected to the existing one with a line.
|
|
* The winding rule of the Shape is ignored.
|
|
*
|
|
* @param s the shape (<code>null</code> not permitted).
|
|
* @param connect whether to connect the new shape to the existing path.
|
|
*
|
|
* @throws NullPointerException if <code>s</code> is <code>null</code>.
|
|
*/
|
|
public void append(Shape s, boolean connect)
|
|
{
|
|
append(s.getPathIterator(null), connect);
|
|
}
|
|
|
|
/**
|
|
* Appends the segments of a PathIterator to this GeneralPath.
|
|
* Optionally, the initial {@link PathIterator#SEG_MOVETO} segment
|
|
* of the appended path is changed into a {@link
|
|
* PathIterator#SEG_LINETO} segment.
|
|
*
|
|
* @param iter the PathIterator specifying which segments shall be
|
|
* appended (<code>null</code> not permitted).
|
|
*
|
|
* @param connect <code>true</code> for substituting the initial
|
|
* {@link PathIterator#SEG_MOVETO} segment by a {@link
|
|
* PathIterator#SEG_LINETO}, or <code>false</code> for not
|
|
* performing any substitution. If this GeneralPath is currently
|
|
* empty, <code>connect</code> is assumed to be <code>false</code>,
|
|
* thus leaving the initial {@link PathIterator#SEG_MOVETO}
|
|
* unchanged.
|
|
*/
|
|
public void append(PathIterator iter, boolean connect)
|
|
{
|
|
// A bad implementation of this method had caused Classpath bug #6076.
|
|
float[] f = new float[6];
|
|
while (! iter.isDone())
|
|
{
|
|
switch (iter.currentSegment(f))
|
|
{
|
|
case PathIterator.SEG_MOVETO:
|
|
if (! connect || (index == 0))
|
|
{
|
|
moveTo(f[0], f[1]);
|
|
break;
|
|
}
|
|
if ((index >= 1) && (types[index - 1] == PathIterator.SEG_CLOSE)
|
|
&& (f[0] == xpoints[index - 1])
|
|
&& (f[1] == ypoints[index - 1]))
|
|
break;
|
|
|
|
// Fall through.
|
|
case PathIterator.SEG_LINETO:
|
|
lineTo(f[0], f[1]);
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
quadTo(f[0], f[1], f[2], f[3]);
|
|
break;
|
|
case PathIterator.SEG_CUBICTO:
|
|
curveTo(f[0], f[1], f[2], f[3], f[4], f[5]);
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
closePath();
|
|
break;
|
|
}
|
|
|
|
connect = false;
|
|
iter.next();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the path’s current winding rule.
|
|
*
|
|
* @return {@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO}.
|
|
*/
|
|
public int getWindingRule()
|
|
{
|
|
return rule;
|
|
}
|
|
|
|
/**
|
|
* Sets the path’s winding rule, which controls which areas are
|
|
* considered ’inside’ or ’outside’ the path
|
|
* on drawing. Valid rules are WIND_EVEN_ODD for an even-odd winding rule,
|
|
* or WIND_NON_ZERO for a non-zero winding rule.
|
|
*
|
|
* @param rule the rule ({@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO}).
|
|
*/
|
|
public void setWindingRule(int rule)
|
|
{
|
|
if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO)
|
|
throw new IllegalArgumentException();
|
|
this.rule = rule;
|
|
}
|
|
|
|
/**
|
|
* Returns the current appending point of the path.
|
|
*
|
|
* @return The point.
|
|
*/
|
|
public Point2D getCurrentPoint()
|
|
{
|
|
if (subpath < 0)
|
|
return null;
|
|
return new Point2D.Float(xpoints[index - 1], ypoints[index - 1]);
|
|
}
|
|
|
|
/**
|
|
* Resets the path. All points and segments are destroyed.
|
|
*/
|
|
public void reset()
|
|
{
|
|
subpath = -1;
|
|
index = 0;
|
|
}
|
|
|
|
/**
|
|
* Applies a transform to the path.
|
|
*
|
|
* @param xform the transform (<code>null</code> not permitted).
|
|
*/
|
|
public void transform(AffineTransform xform)
|
|
{
|
|
double nx;
|
|
double ny;
|
|
double[] m = new double[6];
|
|
xform.getMatrix(m);
|
|
for (int i = 0; i < index; i++)
|
|
{
|
|
nx = m[0] * xpoints[i] + m[2] * ypoints[i] + m[4];
|
|
ny = m[1] * xpoints[i] + m[3] * ypoints[i] + m[5];
|
|
xpoints[i] = (float) nx;
|
|
ypoints[i] = (float) ny;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates a transformed version of the path.
|
|
* @param xform the transform to apply
|
|
* @return a new transformed GeneralPath
|
|
*/
|
|
public Shape createTransformedShape(AffineTransform xform)
|
|
{
|
|
GeneralPath p = new GeneralPath(this);
|
|
p.transform(xform);
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Returns the path’s bounding box.
|
|
*/
|
|
public Rectangle getBounds()
|
|
{
|
|
return getBounds2D().getBounds();
|
|
}
|
|
|
|
/**
|
|
* Returns the path’s bounding box, in <code>float</code> precision
|
|
*/
|
|
public Rectangle2D getBounds2D()
|
|
{
|
|
float x1;
|
|
float y1;
|
|
float x2;
|
|
float y2;
|
|
|
|
if (index > 0)
|
|
{
|
|
x1 = x2 = xpoints[0];
|
|
y1 = y2 = ypoints[0];
|
|
}
|
|
else
|
|
x1 = x2 = y1 = y2 = 0.0f;
|
|
|
|
for (int i = 0; i < index; i++)
|
|
{
|
|
x1 = Math.min(xpoints[i], x1);
|
|
y1 = Math.min(ypoints[i], y1);
|
|
x2 = Math.max(xpoints[i], x2);
|
|
y2 = Math.max(ypoints[i], y2);
|
|
}
|
|
return (new Rectangle2D.Float(x1, y1, x2 - x1, y2 - y1));
|
|
}
|
|
|
|
/**
|
|
* Evaluates if a point is within the GeneralPath,
|
|
* The NON_ZERO winding rule is used, regardless of the
|
|
* set winding rule.
|
|
* @param x x coordinate of the point to evaluate
|
|
* @param y y coordinate of the point to evaluate
|
|
* @return true if the point is within the path, false otherwise
|
|
*/
|
|
public boolean contains(double x, double y)
|
|
{
|
|
return (getWindingNumber(x, y) != 0);
|
|
}
|
|
|
|
/**
|
|
* Evaluates if a Point2D is within the GeneralPath,
|
|
* The NON_ZERO winding rule is used, regardless of the
|
|
* set winding rule.
|
|
* @param p The Point2D to evaluate
|
|
* @return true if the point is within the path, false otherwise
|
|
*/
|
|
public boolean contains(Point2D p)
|
|
{
|
|
return contains(p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Evaluates if a rectangle is completely contained within the path.
|
|
* This method will return false in the cases when the box
|
|
* intersects an inner segment of the path.
|
|
* (i.e.: The method is accurate for the EVEN_ODD winding rule)
|
|
*/
|
|
public boolean contains(double x, double y, double w, double h)
|
|
{
|
|
if (! getBounds2D().intersects(x, y, w, h))
|
|
return false;
|
|
|
|
/* Does any edge intersect? */
|
|
if (getAxisIntersections(x, y, false, w) != 0 /* top */
|
|
|| getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
|
|
|| getAxisIntersections(x + w, y, true, h) != 0 /* right */
|
|
|| getAxisIntersections(x, y, true, h) != 0) /* left */
|
|
return false;
|
|
|
|
/* No intersections, is any point inside? */
|
|
if (getWindingNumber(x, y) != 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Evaluates if a rectangle is completely contained within the path.
|
|
* This method will return false in the cases when the box
|
|
* intersects an inner segment of the path.
|
|
* (i.e.: The method is accurate for the EVEN_ODD winding rule)
|
|
* @param r the rectangle
|
|
* @return <code>true</code> if the rectangle is completely contained
|
|
* within the path, <code>false</code> otherwise
|
|
*/
|
|
public boolean contains(Rectangle2D r)
|
|
{
|
|
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|
}
|
|
|
|
/**
|
|
* Evaluates if a rectangle intersects the path.
|
|
* @param x x coordinate of the rectangle
|
|
* @param y y coordinate of the rectangle
|
|
* @param w width of the rectangle
|
|
* @param h height of the rectangle
|
|
* @return <code>true</code> if the rectangle intersects the path,
|
|
* <code>false</code> otherwise
|
|
*/
|
|
public boolean intersects(double x, double y, double w, double h)
|
|
{
|
|
/* Does any edge intersect? */
|
|
if (getAxisIntersections(x, y, false, w) != 0 /* top */
|
|
|| getAxisIntersections(x, y + h, false, w) != 0 /* bottom */
|
|
|| getAxisIntersections(x + w, y, true, h) != 0 /* right */
|
|
|| getAxisIntersections(x, y, true, h) != 0) /* left */
|
|
return true;
|
|
|
|
/* No intersections, is any point inside? */
|
|
if (getWindingNumber(x, y) != 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Evaluates if a Rectangle2D intersects the path.
|
|
* @param r The rectangle
|
|
* @return <code>true</code> if the rectangle intersects the path,
|
|
* <code>false</code> otherwise
|
|
*/
|
|
public boolean intersects(Rectangle2D r)
|
|
{
|
|
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|
}
|
|
|
|
/**
|
|
* A PathIterator that iterates over the segments of a GeneralPath.
|
|
*
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
|
*/
|
|
private static class GeneralPathIterator implements PathIterator
|
|
{
|
|
/**
|
|
* The number of coordinate values for each segment type.
|
|
*/
|
|
private static final int[] NUM_COORDS = {
|
|
/* 0: SEG_MOVETO */ 1,
|
|
/* 1: SEG_LINETO */ 1,
|
|
/* 2: SEG_QUADTO */ 2,
|
|
/* 3: SEG_CUBICTO */ 3,
|
|
/* 4: SEG_CLOSE */ 0};
|
|
|
|
/**
|
|
* The GeneralPath whose segments are being iterated.
|
|
* This is package-private to avoid an accessor method.
|
|
*/
|
|
final GeneralPath path;
|
|
|
|
/**
|
|
* The affine transformation used to transform coordinates.
|
|
*/
|
|
private final AffineTransform transform;
|
|
|
|
/**
|
|
* The current position of the iterator.
|
|
*/
|
|
private int pos;
|
|
|
|
/**
|
|
* Constructs a new iterator for enumerating the segments of a
|
|
* GeneralPath.
|
|
*
|
|
* @param path the path to enumerate
|
|
* @param transform an affine transformation for projecting the returned
|
|
* points, or <code>null</code> to return the original points
|
|
* without any mapping.
|
|
*/
|
|
GeneralPathIterator(GeneralPath path, AffineTransform transform)
|
|
{
|
|
this.path = path;
|
|
this.transform = transform;
|
|
}
|
|
|
|
/**
|
|
* Returns the current winding rule of the GeneralPath.
|
|
*/
|
|
public int getWindingRule()
|
|
{
|
|
return path.rule;
|
|
}
|
|
|
|
/**
|
|
* Determines whether the iterator has reached the last segment in
|
|
* the path.
|
|
*/
|
|
public boolean isDone()
|
|
{
|
|
return pos >= path.index;
|
|
}
|
|
|
|
/**
|
|
* Advances the iterator position by one segment.
|
|
*/
|
|
public void next()
|
|
{
|
|
int seg;
|
|
|
|
/*
|
|
* Increment pos by the number of coordinate pairs.
|
|
*/
|
|
seg = path.types[pos];
|
|
if (seg == SEG_CLOSE)
|
|
pos++;
|
|
else
|
|
pos += NUM_COORDS[seg];
|
|
}
|
|
|
|
/**
|
|
* Returns the current segment in float coordinates.
|
|
*/
|
|
public int currentSegment(float[] coords)
|
|
{
|
|
int seg;
|
|
int numCoords;
|
|
|
|
seg = path.types[pos];
|
|
numCoords = NUM_COORDS[seg];
|
|
if (numCoords > 0)
|
|
{
|
|
for (int i = 0; i < numCoords; i++)
|
|
{
|
|
coords[i << 1] = path.xpoints[pos + i];
|
|
coords[(i << 1) + 1] = path.ypoints[pos + i];
|
|
}
|
|
|
|
if (transform != null)
|
|
transform.transform( /* src */
|
|
coords, /* srcOffset */
|
|
0, /* dest */ coords, /* destOffset */
|
|
0, /* numPoints */ numCoords);
|
|
}
|
|
return seg;
|
|
}
|
|
|
|
/**
|
|
* Returns the current segment in double coordinates.
|
|
*/
|
|
public int currentSegment(double[] coords)
|
|
{
|
|
int seg;
|
|
int numCoords;
|
|
|
|
seg = path.types[pos];
|
|
numCoords = NUM_COORDS[seg];
|
|
if (numCoords > 0)
|
|
{
|
|
for (int i = 0; i < numCoords; i++)
|
|
{
|
|
coords[i << 1] = (double) path.xpoints[pos + i];
|
|
coords[(i << 1) + 1] = (double) path.ypoints[pos + i];
|
|
}
|
|
if (transform != null)
|
|
transform.transform( /* src */
|
|
coords, /* srcOffset */
|
|
0, /* dest */ coords, /* destOffset */
|
|
0, /* numPoints */ numCoords);
|
|
}
|
|
return seg;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates a PathIterator for iterating along the segments of the path.
|
|
*
|
|
* @param at an affine transformation for projecting the returned
|
|
* points, or <code>null</code> to let the created iterator return
|
|
* the original points without any mapping.
|
|
*/
|
|
public PathIterator getPathIterator(AffineTransform at)
|
|
{
|
|
return new GeneralPathIterator(this, at);
|
|
}
|
|
|
|
/**
|
|
* Creates a new FlatteningPathIterator for the path
|
|
*/
|
|
public PathIterator getPathIterator(AffineTransform at, double flatness)
|
|
{
|
|
return new FlatteningPathIterator(getPathIterator(at), flatness);
|
|
}
|
|
|
|
/**
|
|
* Creates a new shape of the same run-time type with the same contents
|
|
* as this one.
|
|
*
|
|
* @return the clone
|
|
*
|
|
* @exception OutOfMemoryError If there is not enough memory available.
|
|
*
|
|
* @since 1.2
|
|
*/
|
|
public Object clone()
|
|
{
|
|
// This class is final; no need to use super.clone().
|
|
return new GeneralPath(this);
|
|
}
|
|
|
|
/**
|
|
* Helper method - ensure the size of the data arrays,
|
|
* otherwise, reallocate new ones twice the size
|
|
*
|
|
* @param size the minimum array size.
|
|
*/
|
|
private void ensureSize(int size)
|
|
{
|
|
if (subpath < 0)
|
|
throw new IllegalPathStateException("need initial moveto");
|
|
if (size <= xpoints.length)
|
|
return;
|
|
byte[] b = new byte[types.length << 1];
|
|
System.arraycopy(types, 0, b, 0, index);
|
|
types = b;
|
|
float[] f = new float[xpoints.length << 1];
|
|
System.arraycopy(xpoints, 0, f, 0, index);
|
|
xpoints = f;
|
|
f = new float[ypoints.length << 1];
|
|
System.arraycopy(ypoints, 0, f, 0, index);
|
|
ypoints = f;
|
|
}
|
|
|
|
/**
|
|
* Helper method - Get the total number of intersections from (x,y) along
|
|
* a given axis, within a given distance.
|
|
*/
|
|
private int getAxisIntersections(double x, double y, boolean useYaxis,
|
|
double distance)
|
|
{
|
|
return (evaluateCrossings(x, y, false, useYaxis, distance));
|
|
}
|
|
|
|
/**
|
|
* Helper method - returns the winding number of a point.
|
|
*/
|
|
private int getWindingNumber(double x, double y)
|
|
{
|
|
/* Evaluate the crossings from x,y to infinity on the y axis (arbitrary
|
|
choice). Note that we don't actually use Double.INFINITY, since that's
|
|
slower, and may cause problems. */
|
|
return (evaluateCrossings(x, y, true, true, BIG_VALUE));
|
|
}
|
|
|
|
/**
|
|
* Helper method - evaluates the number of intersections on an axis from
|
|
* the point (x,y) to the point (x,y+distance) or (x+distance,y).
|
|
* @param x x coordinate.
|
|
* @param y y coordinate.
|
|
* @param neg True if opposite-directed intersections should cancel,
|
|
* false to sum all intersections.
|
|
* @param useYaxis Use the Y axis, false uses the X axis.
|
|
* @param distance Interval from (x,y) on the selected axis to find
|
|
* intersections.
|
|
*/
|
|
private int evaluateCrossings(double x, double y, boolean neg,
|
|
boolean useYaxis, double distance)
|
|
{
|
|
float cx = 0.0f;
|
|
float cy = 0.0f;
|
|
float firstx = 0.0f;
|
|
float firsty = 0.0f;
|
|
|
|
int negative = (neg) ? -1 : 1;
|
|
double x0;
|
|
double x1;
|
|
double x2;
|
|
double x3;
|
|
double y0;
|
|
double y1;
|
|
double y2;
|
|
double y3;
|
|
double[] r = new double[4];
|
|
int nRoots;
|
|
double epsilon = 0.0;
|
|
int pos = 0;
|
|
int windingNumber = 0;
|
|
boolean pathStarted = false;
|
|
|
|
if (index == 0)
|
|
return (0);
|
|
if (useYaxis)
|
|
{
|
|
float[] swap1;
|
|
swap1 = ypoints;
|
|
ypoints = xpoints;
|
|
xpoints = swap1;
|
|
double swap2;
|
|
swap2 = y;
|
|
y = x;
|
|
x = swap2;
|
|
}
|
|
|
|
/* Get a value which is hopefully small but not insignificant relative
|
|
the path. */
|
|
epsilon = ypoints[0] * 1E-7;
|
|
|
|
if(epsilon == 0)
|
|
epsilon = 1E-7;
|
|
|
|
pos = 0;
|
|
while (pos < index)
|
|
{
|
|
switch (types[pos])
|
|
{
|
|
case PathIterator.SEG_MOVETO:
|
|
if (pathStarted) // close old path
|
|
{
|
|
x0 = cx;
|
|
y0 = cy;
|
|
x1 = firstx;
|
|
y1 = firsty;
|
|
|
|
if (y0 == 0.0)
|
|
y0 -= epsilon;
|
|
if (y1 == 0.0)
|
|
y1 -= epsilon;
|
|
if (Line2D.linesIntersect(x0, y0, x1, y1,
|
|
epsilon, 0.0, distance, 0.0))
|
|
windingNumber += (y1 < y0) ? 1 : negative;
|
|
|
|
cx = firstx;
|
|
cy = firsty;
|
|
}
|
|
cx = firstx = xpoints[pos] - (float) x;
|
|
cy = firsty = ypoints[pos++] - (float) y;
|
|
pathStarted = true;
|
|
break;
|
|
case PathIterator.SEG_CLOSE:
|
|
x0 = cx;
|
|
y0 = cy;
|
|
x1 = firstx;
|
|
y1 = firsty;
|
|
|
|
if (y0 == 0.0)
|
|
y0 -= epsilon;
|
|
if (y1 == 0.0)
|
|
y1 -= epsilon;
|
|
if (Line2D.linesIntersect(x0, y0, x1, y1,
|
|
epsilon, 0.0, distance, 0.0))
|
|
windingNumber += (y1 < y0) ? 1 : negative;
|
|
|
|
cx = firstx;
|
|
cy = firsty;
|
|
pos++;
|
|
pathStarted = false;
|
|
break;
|
|
case PathIterator.SEG_LINETO:
|
|
x0 = cx;
|
|
y0 = cy;
|
|
x1 = xpoints[pos] - (float) x;
|
|
y1 = ypoints[pos++] - (float) y;
|
|
|
|
if (y0 == 0.0)
|
|
y0 -= epsilon;
|
|
if (y1 == 0.0)
|
|
y1 -= epsilon;
|
|
if (Line2D.linesIntersect(x0, y0, x1, y1,
|
|
epsilon, 0.0, distance, 0.0))
|
|
windingNumber += (y1 < y0) ? 1 : negative;
|
|
|
|
cx = xpoints[pos - 1] - (float) x;
|
|
cy = ypoints[pos - 1] - (float) y;
|
|
break;
|
|
case PathIterator.SEG_QUADTO:
|
|
x0 = cx;
|
|
y0 = cy;
|
|
x1 = xpoints[pos] - x;
|
|
y1 = ypoints[pos++] - y;
|
|
x2 = xpoints[pos] - x;
|
|
y2 = ypoints[pos++] - y;
|
|
|
|
/* check if curve may intersect X+ axis. */
|
|
if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0)
|
|
&& (y0 * y1 <= 0 || y1 * y2 <= 0))
|
|
{
|
|
if (y0 == 0.0)
|
|
y0 -= epsilon;
|
|
if (y2 == 0.0)
|
|
y2 -= epsilon;
|
|
|
|
r[0] = y0;
|
|
r[1] = 2 * (y1 - y0);
|
|
r[2] = (y2 - 2 * y1 + y0);
|
|
|
|
/* degenerate roots (=tangent points) do not
|
|
contribute to the winding number. */
|
|
if ((nRoots = QuadCurve2D.solveQuadratic(r)) == 2)
|
|
for (int i = 0; i < nRoots; i++)
|
|
{
|
|
float t = (float) r[i];
|
|
if (t > 0.0f && t < 1.0f)
|
|
{
|
|
double crossing = t * t * (x2 - 2 * x1 + x0)
|
|
+ 2 * t * (x1 - x0) + x0;
|
|
if (crossing >= 0.0 && crossing <= distance)
|
|
windingNumber += (2 * t * (y2 - 2 * y1 + y0)
|
|
+ 2 * (y1 - y0) < 0) ? 1 : negative;
|
|
}
|
|
}
|
|
}
|
|
|
|
cx = xpoints[pos - 1] - (float) x;
|
|
cy = ypoints[pos - 1] - (float) y;
|
|
break;
|
|
case PathIterator.SEG_CUBICTO:
|
|
x0 = cx;
|
|
y0 = cy;
|
|
x1 = xpoints[pos] - x;
|
|
y1 = ypoints[pos++] - y;
|
|
x2 = xpoints[pos] - x;
|
|
y2 = ypoints[pos++] - y;
|
|
x3 = xpoints[pos] - x;
|
|
y3 = ypoints[pos++] - y;
|
|
|
|
/* check if curve may intersect X+ axis. */
|
|
if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
|
|
&& (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
|
|
{
|
|
if (y0 == 0.0)
|
|
y0 -= epsilon;
|
|
if (y3 == 0.0)
|
|
y3 -= epsilon;
|
|
|
|
r[0] = y0;
|
|
r[1] = 3 * (y1 - y0);
|
|
r[2] = 3 * (y2 + y0 - 2 * y1);
|
|
r[3] = y3 - 3 * y2 + 3 * y1 - y0;
|
|
|
|
if ((nRoots = CubicCurve2D.solveCubic(r)) != 0)
|
|
for (int i = 0; i < nRoots; i++)
|
|
{
|
|
float t = (float) r[i];
|
|
if (t > 0.0 && t < 1.0)
|
|
{
|
|
double crossing = -(t * t * t) * (x0 - 3 * x1
|
|
+ 3 * x2 - x3)
|
|
+ 3 * t * t * (x0 - 2 * x1 + x2)
|
|
+ 3 * t * (x1 - x0) + x0;
|
|
if (crossing >= 0 && crossing <= distance)
|
|
windingNumber += (3 * t * t * (y3 + 3 * y1
|
|
- 3 * y2 - y0)
|
|
+ 6 * t * (y0 - 2 * y1 + y2)
|
|
+ 3 * (y1 - y0) < 0) ? 1 : negative;
|
|
}
|
|
}
|
|
}
|
|
|
|
cx = xpoints[pos - 1] - (float) x;
|
|
cy = ypoints[pos - 1] - (float) y;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// swap coordinates back
|
|
if (useYaxis)
|
|
{
|
|
float[] swap;
|
|
swap = ypoints;
|
|
ypoints = xpoints;
|
|
xpoints = swap;
|
|
}
|
|
return (windingNumber);
|
|
}
|
|
} // class GeneralPath
|