mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-13 03:29:50 +00:00
1183 lines
35 KiB
Java
1183 lines
35 KiB
Java
/* Line2D.java -- represents a line in 2-D space, plus operations on a line
|
|
Copyright (C) 2000, 2001, 2002 Free Software Foundation
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.awt.geom;
|
|
|
|
import java.awt.Rectangle;
|
|
import java.awt.Shape;
|
|
import java.util.NoSuchElementException;
|
|
|
|
/**
|
|
* Represents a directed line bewteen two points in (x,y) Cartesian space.
|
|
* Remember, on-screen graphics have increasing x from left-to-right, and
|
|
* increasing y from top-to-bottom. The storage is left to subclasses.
|
|
*
|
|
* @author Tom Tromey (tromey@cygnus.com)
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @author David Gilbert
|
|
* @since 1.2
|
|
* @status updated to 1.4
|
|
*/
|
|
public abstract class Line2D implements Shape, Cloneable
|
|
{
|
|
/**
|
|
* The default constructor.
|
|
*/
|
|
protected Line2D()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the first point.
|
|
*
|
|
* @return the starting x coordinate
|
|
*/
|
|
public abstract double getX1();
|
|
|
|
/**
|
|
* Return the y coordinate of the first point.
|
|
*
|
|
* @return the starting y coordinate
|
|
*/
|
|
public abstract double getY1();
|
|
|
|
/**
|
|
* Return the first point.
|
|
*
|
|
* @return the starting point
|
|
*/
|
|
public abstract Point2D getP1();
|
|
|
|
/**
|
|
* Return the x coordinate of the second point.
|
|
*
|
|
* @return the ending x coordinate
|
|
*/
|
|
public abstract double getX2();
|
|
|
|
/**
|
|
* Return the y coordinate of the second point.
|
|
*
|
|
* @return the ending y coordinate
|
|
*/
|
|
public abstract double getY2();
|
|
|
|
/**
|
|
* Return the second point.
|
|
*
|
|
* @return the ending point
|
|
*/
|
|
public abstract Point2D getP2();
|
|
|
|
/**
|
|
* Set the coordinates of the line to the given coordinates. Loss of
|
|
* precision may occur due to rounding issues.
|
|
*
|
|
* @param x1 the first x coordinate
|
|
* @param y1 the first y coordinate
|
|
* @param x2 the second x coordinate
|
|
* @param y2 the second y coordinate
|
|
*/
|
|
public abstract void setLine(double x1, double y1, double x2, double y2);
|
|
|
|
/**
|
|
* Set the coordinates to the given points.
|
|
*
|
|
* @param p1 the first point
|
|
* @param p2 the second point
|
|
* @throws NullPointerException if either point is null
|
|
*/
|
|
public void setLine(Point2D p1, Point2D p2)
|
|
{
|
|
setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
|
|
}
|
|
|
|
/**
|
|
* Set the coordinates to those of the given line.
|
|
*
|
|
* @param l the line to copy
|
|
* @throws NullPointerException if l is null
|
|
*/
|
|
public void setLine(Line2D l)
|
|
{
|
|
setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
|
|
}
|
|
|
|
/**
|
|
* Computes the relative rotation direction needed to pivot the line about
|
|
* the first point in order to have the second point colinear with point p.
|
|
* Because of floating point rounding, don't expect this to be a perfect
|
|
* measure of colinearity. The answer is 1 if the line has a shorter rotation
|
|
* in the direction of the positive X axis to the negative Y axis
|
|
* (counter-clockwise in the default Java coordinate system), or -1 if the
|
|
* shortest rotation is in the opposite direction (clockwise). If p
|
|
* is already colinear, the return value is -1 if it lies beyond the first
|
|
* point, 0 if it lies in the segment, or 1 if it lies beyond the second
|
|
* point. If the first and second point are coincident, this returns 0.
|
|
*
|
|
* @param x1 the first x coordinate
|
|
* @param y1 the first y coordinate
|
|
* @param x2 the second x coordinate
|
|
* @param y2 the second y coordinate
|
|
* @param px the reference x coordinate
|
|
* @param py the reference y coordinate
|
|
* @return the relative rotation direction
|
|
*/
|
|
public static int relativeCCW(double x1, double y1, double x2, double y2,
|
|
double px, double py)
|
|
{
|
|
if ((x1 == x2 && y1 == y2)
|
|
|| (x1 == px && y1 == py))
|
|
return 0; // Coincident points.
|
|
// Translate to the origin.
|
|
x2 -= x1;
|
|
y2 -= y1;
|
|
px -= x1;
|
|
py -= y1;
|
|
double slope2 = y2 / x2;
|
|
double slopep = py / px;
|
|
if (slope2 == slopep || (x2 == 0 && px == 0))
|
|
return y2 > 0 // Colinear.
|
|
? (py < 0 ? -1 : py > y2 ? 1 : 0)
|
|
: (py > 0 ? -1 : py < y2 ? 1 : 0);
|
|
if (x2 >= 0 && slope2 >= 0)
|
|
return px >= 0 // Quadrant 1.
|
|
? (slope2 > slopep ? 1 : -1)
|
|
: (slope2 < slopep ? 1 : -1);
|
|
if (y2 > 0)
|
|
return px < 0 // Quadrant 2.
|
|
? (slope2 > slopep ? 1 : -1)
|
|
: (slope2 < slopep ? 1 : -1);
|
|
if (slope2 >= 0.0)
|
|
return px >= 0 // Quadrant 3.
|
|
? (slope2 < slopep ? 1 : -1)
|
|
: (slope2 > slopep ? 1 : -1);
|
|
return px < 0 // Quadrant 4.
|
|
? (slope2 < slopep ? 1 : -1)
|
|
: (slope2 > slopep ? 1 : -1);
|
|
}
|
|
|
|
/**
|
|
* Computes the relative rotation direction needed to pivot this line about
|
|
* the first point in order to have the second point colinear with point p.
|
|
* Because of floating point rounding, don't expect this to be a perfect
|
|
* measure of colinearity. The answer is 1 if the line has a shorter rotation
|
|
* in the direction of the positive X axis to the negative Y axis
|
|
* (counter-clockwise in the default Java coordinate system), or -1 if the
|
|
* shortest rotation is in the opposite direction (clockwise). If p
|
|
* is already colinear, the return value is -1 if it lies beyond the first
|
|
* point, 0 if it lies in the segment, or 1 if it lies beyond the second
|
|
* point. If the first and second point are coincident, this returns 0.
|
|
*
|
|
* @param px the reference x coordinate
|
|
* @param py the reference y coordinate
|
|
* @return the relative rotation direction
|
|
* @see #relativeCCW(double, double, double, double, double, double)
|
|
*/
|
|
public int relativeCCW(double px, double py)
|
|
{
|
|
return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
|
|
}
|
|
|
|
/**
|
|
* Computes the relative rotation direction needed to pivot this line about
|
|
* the first point in order to have the second point colinear with point p.
|
|
* Because of floating point rounding, don't expect this to be a perfect
|
|
* measure of colinearity. The answer is 1 if the line has a shorter rotation
|
|
* in the direction of the positive X axis to the negative Y axis
|
|
* (counter-clockwise in the default Java coordinate system), or -1 if the
|
|
* shortest rotation is in the opposite direction (clockwise). If p
|
|
* is already colinear, the return value is -1 if it lies beyond the first
|
|
* point, 0 if it lies in the segment, or 1 if it lies beyond the second
|
|
* point. If the first and second point are coincident, this returns 0.
|
|
*
|
|
* @param p the reference point
|
|
* @return the relative rotation direction
|
|
* @throws NullPointerException if p is null
|
|
* @see #relativeCCW(double, double, double, double, double, double)
|
|
*/
|
|
public int relativeCCW(Point2D p)
|
|
{
|
|
return relativeCCW(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Computes twice the (signed) area of the triangle defined by the three
|
|
* points. This method is used for intersection testing.
|
|
*
|
|
* @param x1 the x-coordinate of the first point.
|
|
* @param y1 the y-coordinate of the first point.
|
|
* @param x2 the x-coordinate of the second point.
|
|
* @param y2 the y-coordinate of the second point.
|
|
* @param x3 the x-coordinate of the third point.
|
|
* @param y3 the y-coordinate of the third point.
|
|
*
|
|
* @return Twice the area.
|
|
*/
|
|
private static double area2(double x1, double y1,
|
|
double x2, double y2,
|
|
double x3, double y3)
|
|
{
|
|
return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
|
|
}
|
|
|
|
/**
|
|
* Returns <code>true</code> if (x3, y3) lies between (x1, y1) and (x2, y2),
|
|
* and false otherwise, This test assumes that the three points are
|
|
* collinear, and is used for intersection testing.
|
|
*
|
|
* @param x1 the x-coordinate of the first point.
|
|
* @param y1 the y-coordinate of the first point.
|
|
* @param x2 the x-coordinate of the second point.
|
|
* @param y2 the y-coordinate of the second point.
|
|
* @param x3 the x-coordinate of the third point.
|
|
* @param y3 the y-coordinate of the third point.
|
|
*
|
|
* @return A boolean.
|
|
*/
|
|
private static boolean between(double x1, double y1,
|
|
double x2, double y2,
|
|
double x3, double y3)
|
|
{
|
|
if (x1 != x2) {
|
|
return (x1 <= x3 && x3 <= x2) || (x1 >= x3 && x3 >= x2);
|
|
}
|
|
else {
|
|
return (y1 <= y3 && y3 <= y2) || (y1 >= y3 && y3 >= y2);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test if the line segment (x1,y1)->(x2,y2) intersects the line segment
|
|
* (x3,y3)->(x4,y4).
|
|
*
|
|
* @param x1 the first x coordinate of the first segment
|
|
* @param y1 the first y coordinate of the first segment
|
|
* @param x2 the second x coordinate of the first segment
|
|
* @param y2 the second y coordinate of the first segment
|
|
* @param x3 the first x coordinate of the second segment
|
|
* @param y3 the first y coordinate of the second segment
|
|
* @param x4 the second x coordinate of the second segment
|
|
* @param y4 the second y coordinate of the second segment
|
|
* @return true if the segments intersect
|
|
*/
|
|
public static boolean linesIntersect(double x1, double y1,
|
|
double x2, double y2,
|
|
double x3, double y3,
|
|
double x4, double y4)
|
|
{
|
|
double a1, a2, a3, a4;
|
|
|
|
// deal with special cases
|
|
if ((a1 = area2(x1, y1, x2, y2, x3, y3)) == 0.0)
|
|
{
|
|
// check if p3 is between p1 and p2 OR
|
|
// p4 is collinear also AND either between p1 and p2 OR at opposite ends
|
|
if (between(x1, y1, x2, y2, x3, y3))
|
|
{
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (area2(x1, y1, x2, y2, x4, y4) == 0.0)
|
|
{
|
|
return between(x3, y3, x4, y4, x1, y1)
|
|
|| between (x3, y3, x4, y4, x2, y2);
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else if ((a2 = area2(x1, y1, x2, y2, x4, y4)) == 0.0)
|
|
{
|
|
// check if p4 is between p1 and p2 (we already know p3 is not
|
|
// collinear)
|
|
return between(x1, y1, x2, y2, x4, y4);
|
|
}
|
|
|
|
if ((a3 = area2(x3, y3, x4, y4, x1, y1)) == 0.0) {
|
|
// check if p1 is between p3 and p4 OR
|
|
// p2 is collinear also AND either between p1 and p2 OR at opposite ends
|
|
if (between(x3, y3, x4, y4, x1, y1)) {
|
|
return true;
|
|
}
|
|
else {
|
|
if (area2(x3, y3, x4, y4, x2, y2) == 0.0) {
|
|
return between(x1, y1, x2, y2, x3, y3)
|
|
|| between (x1, y1, x2, y2, x4, y4);
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else if ((a4 = area2(x3, y3, x4, y4, x2, y2)) == 0.0) {
|
|
// check if p2 is between p3 and p4 (we already know p1 is not
|
|
// collinear)
|
|
return between(x3, y3, x4, y4, x2, y2);
|
|
}
|
|
else { // test for regular intersection
|
|
return ((a1 > 0.0) ^ (a2 > 0.0)) && ((a3 > 0.0) ^ (a4 > 0.0));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test if this line intersects the line given by (x1,y1)->(x2,y2).
|
|
*
|
|
* @param x1 the first x coordinate of the other segment
|
|
* @param y1 the first y coordinate of the other segment
|
|
* @param x2 the second x coordinate of the other segment
|
|
* @param y2 the second y coordinate of the other segment
|
|
* @return true if the segments intersect
|
|
* @see #linesIntersect(double, double, double, double,
|
|
* double, double, double, double)
|
|
*/
|
|
public boolean intersectsLine(double x1, double y1, double x2, double y2)
|
|
{
|
|
return linesIntersect(getX1(), getY1(), getX2(), getY2(),
|
|
x1, y1, x2, y2);
|
|
}
|
|
|
|
/**
|
|
* Test if this line intersects the given line.
|
|
*
|
|
* @param l the other segment
|
|
* @return true if the segments intersect
|
|
* @throws NullPointerException if l is null
|
|
* @see #linesIntersect(double, double, double, double,
|
|
* double, double, double, double)
|
|
*/
|
|
public boolean intersectsLine(Line2D l)
|
|
{
|
|
return linesIntersect(getX1(), getY1(), getX2(), getY2(),
|
|
l.getX1(), l.getY1(), l.getX2(), l.getY2());
|
|
}
|
|
|
|
/**
|
|
* Measures the square of the shortest distance from the reference point
|
|
* to a point on the line segment. If the point is on the segment, the
|
|
* result will be 0.
|
|
*
|
|
* @param x1 the first x coordinate of the segment
|
|
* @param y1 the first y coordinate of the segment
|
|
* @param x2 the second x coordinate of the segment
|
|
* @param y2 the second y coordinate of the segment
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the square of the distance from the point to the segment
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
|
*/
|
|
public static double ptSegDistSq(double x1, double y1, double x2, double y2,
|
|
double px, double py)
|
|
{
|
|
double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
|
|
|
|
double x, y;
|
|
if (pd2 == 0)
|
|
{
|
|
// Points are coincident.
|
|
x = x1;
|
|
y = y2;
|
|
}
|
|
else
|
|
{
|
|
double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
|
|
|
|
if (u < 0)
|
|
{
|
|
// "Off the end"
|
|
x = x1;
|
|
y = y1;
|
|
}
|
|
else if (u > 1.0)
|
|
{
|
|
x = x2;
|
|
y = y2;
|
|
}
|
|
else
|
|
{
|
|
x = x1 + u * (x2 - x1);
|
|
y = y1 + u * (y2 - y1);
|
|
}
|
|
}
|
|
|
|
return (x - px) * (x - px) + (y - py) * (y - py);
|
|
}
|
|
|
|
/**
|
|
* Measures the shortest distance from the reference point to a point on
|
|
* the line segment. If the point is on the segment, the result will be 0.
|
|
*
|
|
* @param x1 the first x coordinate of the segment
|
|
* @param y1 the first y coordinate of the segment
|
|
* @param x2 the second x coordinate of the segment
|
|
* @param y2 the second y coordinate of the segment
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the distance from the point to the segment
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
|
*/
|
|
public static double ptSegDist(double x1, double y1, double x2, double y2,
|
|
double px, double py)
|
|
{
|
|
return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
|
|
}
|
|
|
|
/**
|
|
* Measures the square of the shortest distance from the reference point
|
|
* to a point on this line segment. If the point is on the segment, the
|
|
* result will be 0.
|
|
*
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the square of the distance from the point to the segment
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
|
*/
|
|
public double ptSegDistSq(double px, double py)
|
|
{
|
|
return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
|
|
}
|
|
|
|
/**
|
|
* Measures the square of the shortest distance from the reference point
|
|
* to a point on this line segment. If the point is on the segment, the
|
|
* result will be 0.
|
|
*
|
|
* @param p the point
|
|
* @return the square of the distance from the point to the segment
|
|
* @throws NullPointerException if p is null
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
|
*/
|
|
public double ptSegDistSq(Point2D p)
|
|
{
|
|
return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Measures the shortest distance from the reference point to a point on
|
|
* this line segment. If the point is on the segment, the result will be 0.
|
|
*
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the distance from the point to the segment
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
|
*/
|
|
public double ptSegDist(double px, double py)
|
|
{
|
|
return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
|
|
}
|
|
|
|
/**
|
|
* Measures the shortest distance from the reference point to a point on
|
|
* this line segment. If the point is on the segment, the result will be 0.
|
|
*
|
|
* @param p the point
|
|
* @return the distance from the point to the segment
|
|
* @throws NullPointerException if p is null
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
|
*/
|
|
public double ptSegDist(Point2D p)
|
|
{
|
|
return ptSegDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Measures the square of the shortest distance from the reference point
|
|
* to a point on the infinite line extended from the segment. If the point
|
|
* is on the segment, the result will be 0. If the segment is length 0,
|
|
* the distance is to the common endpoint.
|
|
*
|
|
* @param x1 the first x coordinate of the segment
|
|
* @param y1 the first y coordinate of the segment
|
|
* @param x2 the second x coordinate of the segment
|
|
* @param y2 the second y coordinate of the segment
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the square of the distance from the point to the extended line
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
|
*/
|
|
public static double ptLineDistSq(double x1, double y1, double x2, double y2,
|
|
double px, double py)
|
|
{
|
|
double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
|
|
|
|
double x, y;
|
|
if (pd2 == 0)
|
|
{
|
|
// Points are coincident.
|
|
x = x1;
|
|
y = y2;
|
|
}
|
|
else
|
|
{
|
|
double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
|
|
x = x1 + u * (x2 - x1);
|
|
y = y1 + u * (y2 - y1);
|
|
}
|
|
|
|
return (x - px) * (x - px) + (y - py) * (y - py);
|
|
}
|
|
|
|
/**
|
|
* Measures the shortest distance from the reference point to a point on
|
|
* the infinite line extended from the segment. If the point is on the
|
|
* segment, the result will be 0. If the segment is length 0, the distance
|
|
* is to the common endpoint.
|
|
*
|
|
* @param x1 the first x coordinate of the segment
|
|
* @param y1 the first y coordinate of the segment
|
|
* @param x2 the second x coordinate of the segment
|
|
* @param y2 the second y coordinate of the segment
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the distance from the point to the extended line
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
|
*/
|
|
public static double ptLineDist(double x1, double y1,
|
|
double x2, double y2,
|
|
double px, double py)
|
|
{
|
|
return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
|
|
}
|
|
|
|
/**
|
|
* Measures the square of the shortest distance from the reference point
|
|
* to a point on the infinite line extended from this segment. If the point
|
|
* is on the segment, the result will be 0. If the segment is length 0,
|
|
* the distance is to the common endpoint.
|
|
*
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the square of the distance from the point to the extended line
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
|
*/
|
|
public double ptLineDistSq(double px, double py)
|
|
{
|
|
return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
|
|
}
|
|
|
|
/**
|
|
* Measures the square of the shortest distance from the reference point
|
|
* to a point on the infinite line extended from this segment. If the point
|
|
* is on the segment, the result will be 0. If the segment is length 0,
|
|
* the distance is to the common endpoint.
|
|
*
|
|
* @param p the point
|
|
* @return the square of the distance from the point to the extended line
|
|
* @throws NullPointerException if p is null
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
|
*/
|
|
public double ptLineDistSq(Point2D p)
|
|
{
|
|
return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
|
|
p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Measures the shortest distance from the reference point to a point on
|
|
* the infinite line extended from this segment. If the point is on the
|
|
* segment, the result will be 0. If the segment is length 0, the distance
|
|
* is to the common endpoint.
|
|
*
|
|
* @param px the x coordinate of the point
|
|
* @param py the y coordinate of the point
|
|
* @return the distance from the point to the extended line
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
|
*/
|
|
public double ptLineDist(double px, double py)
|
|
{
|
|
return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
|
|
}
|
|
|
|
/**
|
|
* Measures the shortest distance from the reference point to a point on
|
|
* the infinite line extended from this segment. If the point is on the
|
|
* segment, the result will be 0. If the segment is length 0, the distance
|
|
* is to the common endpoint.
|
|
*
|
|
* @param p the point
|
|
* @return the distance from the point to the extended line
|
|
* @throws NullPointerException if p is null
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
|
*/
|
|
public double ptLineDist(Point2D p)
|
|
{
|
|
return ptLineDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
|
}
|
|
|
|
/**
|
|
* Test if a point is contained inside the line. Since a line has no area,
|
|
* this returns false.
|
|
*
|
|
* @param x the x coordinate
|
|
* @param y the y coordinate
|
|
* @return false; the line does not contain points
|
|
*/
|
|
public boolean contains(double x, double y)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Test if a point is contained inside the line. Since a line has no area,
|
|
* this returns false.
|
|
*
|
|
* @param p the point
|
|
* @return false; the line does not contain points
|
|
*/
|
|
public boolean contains(Point2D p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Tests if this line intersects the interior of the specified rectangle.
|
|
*
|
|
* @param x the x coordinate of the rectangle
|
|
* @param y the y coordinate of the rectangle
|
|
* @param w the width of the rectangle
|
|
* @param h the height of the rectangle
|
|
* @return true if the line intersects the rectangle
|
|
*/
|
|
public boolean intersects(double x, double y, double w, double h)
|
|
{
|
|
if (w <= 0 || h <= 0)
|
|
return false;
|
|
double x1 = getX1();
|
|
double y1 = getY1();
|
|
double x2 = getX2();
|
|
double y2 = getY2();
|
|
|
|
if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
|
|
return true;
|
|
if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
|
|
return true;
|
|
|
|
double x3 = x + w;
|
|
double y3 = y + h;
|
|
|
|
return (linesIntersect(x1, y1, x2, y2, x, y, x, y3)
|
|
|| linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
|
|
|| linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
|
|
|| linesIntersect(x1, y1, x2, y2, x3, y, x, y));
|
|
}
|
|
|
|
/**
|
|
* Tests if this line intersects the interior of the specified rectangle.
|
|
*
|
|
* @param r the rectangle
|
|
* @return true if the line intersects the rectangle
|
|
* @throws NullPointerException if r is null
|
|
*/
|
|
public boolean intersects(Rectangle2D r)
|
|
{
|
|
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
|
}
|
|
|
|
/**
|
|
* Tests if the line contains a rectangle. Since lines have no area, this
|
|
* always returns false.
|
|
*
|
|
* @param x the x coordinate of the rectangle
|
|
* @param y the y coordinate of the rectangle
|
|
* @param w the width of the rectangle
|
|
* @param h the height of the rectangle
|
|
* @return false; the line does not contain points
|
|
*/
|
|
public boolean contains(double x, double y, double w, double h)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Tests if the line contains a rectangle. Since lines have no area, this
|
|
* always returns false.
|
|
*
|
|
* @param r the rectangle
|
|
* @return false; the line does not contain points
|
|
*/
|
|
public boolean contains(Rectangle2D r)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Gets a bounding box (not necessarily minimal) for this line.
|
|
*
|
|
* @return the integer bounding box
|
|
* @see #getBounds2D()
|
|
*/
|
|
public Rectangle getBounds()
|
|
{
|
|
return getBounds2D().getBounds();
|
|
}
|
|
|
|
/**
|
|
* Return a path iterator, possibly applying a transform on the result. This
|
|
* iterator is not threadsafe.
|
|
*
|
|
* @param at the transform, or null
|
|
* @return a new path iterator
|
|
*/
|
|
public PathIterator getPathIterator(final AffineTransform at)
|
|
{
|
|
return new PathIterator()
|
|
{
|
|
/** Current coordinate. */
|
|
private int current = 0;
|
|
|
|
public int getWindingRule()
|
|
{
|
|
return WIND_NON_ZERO;
|
|
}
|
|
|
|
public boolean isDone()
|
|
{
|
|
return current >= 2;
|
|
}
|
|
|
|
public void next()
|
|
{
|
|
current++;
|
|
}
|
|
|
|
public int currentSegment(float[] coords)
|
|
{
|
|
int result;
|
|
switch (current)
|
|
{
|
|
case 0:
|
|
coords[0] = (float) getX1();
|
|
coords[1] = (float) getY1();
|
|
result = SEG_MOVETO;
|
|
break;
|
|
case 1:
|
|
coords[0] = (float) getX2();
|
|
coords[1] = (float) getY2();
|
|
result = SEG_LINETO;
|
|
break;
|
|
default:
|
|
throw new NoSuchElementException("line iterator out of bounds");
|
|
}
|
|
if (at != null)
|
|
at.transform(coords, 0, coords, 0, 1);
|
|
return result;
|
|
}
|
|
|
|
public int currentSegment(double[] coords)
|
|
{
|
|
int result;
|
|
switch (current)
|
|
{
|
|
case 0:
|
|
coords[0] = getX1();
|
|
coords[1] = getY1();
|
|
result = SEG_MOVETO;
|
|
break;
|
|
case 1:
|
|
coords[0] = getX2();
|
|
coords[1] = getY2();
|
|
result = SEG_LINETO;
|
|
break;
|
|
default:
|
|
throw new NoSuchElementException("line iterator out of bounds");
|
|
}
|
|
if (at != null)
|
|
at.transform(coords, 0, coords, 0, 1);
|
|
return result;
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Return a flat path iterator, possibly applying a transform on the result.
|
|
* This iterator is not threadsafe.
|
|
*
|
|
* @param at the transform, or null
|
|
* @param flatness ignored, since lines are already flat
|
|
* @return a new path iterator
|
|
* @see #getPathIterator(AffineTransform)
|
|
*/
|
|
public PathIterator getPathIterator(AffineTransform at, double flatness)
|
|
{
|
|
return getPathIterator(at);
|
|
}
|
|
|
|
/**
|
|
* Create a new line of the same run-time type with the same contents as
|
|
* this one.
|
|
*
|
|
* @return the clone
|
|
*
|
|
* @exception OutOfMemoryError If there is not enough memory available.
|
|
*
|
|
* @since 1.2
|
|
*/
|
|
public Object clone()
|
|
{
|
|
try
|
|
{
|
|
return super.clone();
|
|
}
|
|
catch (CloneNotSupportedException e)
|
|
{
|
|
throw (Error) new InternalError().initCause(e); // Impossible
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This class defines a point in <code>double</code> precision.
|
|
*
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @since 1.2
|
|
* @status updated to 1.4
|
|
*/
|
|
public static class Double extends Line2D
|
|
{
|
|
/** The x coordinate of the first point. */
|
|
public double x1;
|
|
|
|
/** The y coordinate of the first point. */
|
|
public double y1;
|
|
|
|
/** The x coordinate of the second point. */
|
|
public double x2;
|
|
|
|
/** The y coordinate of the second point. */
|
|
public double y2;
|
|
|
|
/**
|
|
* Construct the line segment (0,0)->(0,0).
|
|
*/
|
|
public Double()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Construct the line segment with the specified points.
|
|
*
|
|
* @param x1 the x coordinate of the first point
|
|
* @param y1 the y coordinate of the first point
|
|
* @param x2 the x coordinate of the second point
|
|
* @param y2 the y coordinate of the second point
|
|
*/
|
|
public Double(double x1, double y1, double x2, double y2)
|
|
{
|
|
this.x1 = x1;
|
|
this.y1 = y1;
|
|
this.x2 = x2;
|
|
this.y2 = y2;
|
|
}
|
|
|
|
/**
|
|
* Construct the line segment with the specified points.
|
|
*
|
|
* @param p1 the first point
|
|
* @param p2 the second point
|
|
* @throws NullPointerException if either point is null
|
|
*/
|
|
public Double(Point2D p1, Point2D p2)
|
|
{
|
|
x1 = p1.getX();
|
|
y1 = p1.getY();
|
|
x2 = p2.getX();
|
|
y2 = p2.getY();
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the first point.
|
|
*
|
|
* @return the value of x1
|
|
*/
|
|
public double getX1()
|
|
{
|
|
return x1;
|
|
}
|
|
|
|
/**
|
|
* Return the y coordinate of the first point.
|
|
*
|
|
* @return the value of y1
|
|
*/
|
|
public double getY1()
|
|
{
|
|
return y1;
|
|
}
|
|
|
|
/**
|
|
* Return the first point.
|
|
*
|
|
* @return the point (x1,y1)
|
|
*/
|
|
public Point2D getP1()
|
|
{
|
|
return new Point2D.Double(x1, y1);
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the second point.
|
|
*
|
|
* @return the value of x2
|
|
*/
|
|
public double getX2()
|
|
{
|
|
return x2;
|
|
}
|
|
|
|
/**
|
|
* Return the y coordinate of the second point.
|
|
*
|
|
* @return the value of y2
|
|
*/
|
|
public double getY2()
|
|
{
|
|
return y2;
|
|
}
|
|
|
|
/**
|
|
* Return the second point.
|
|
*
|
|
* @return the point (x2,y2)
|
|
*/
|
|
public Point2D getP2()
|
|
{
|
|
return new Point2D.Double(x2, y2);
|
|
}
|
|
|
|
/**
|
|
* Set this line to the given points.
|
|
*
|
|
* @param x1 the new x coordinate of the first point
|
|
* @param y1 the new y coordinate of the first point
|
|
* @param x2 the new x coordinate of the second point
|
|
* @param y2 the new y coordinate of the second point
|
|
*/
|
|
public void setLine(double x1, double y1, double x2, double y2)
|
|
{
|
|
this.x1 = x1;
|
|
this.y1 = y1;
|
|
this.x2 = x2;
|
|
this.y2 = y2;
|
|
}
|
|
|
|
/**
|
|
* Return the exact bounds of this line segment.
|
|
*
|
|
* @return the bounding box
|
|
*/
|
|
public Rectangle2D getBounds2D()
|
|
{
|
|
double x = Math.min(x1, x2);
|
|
double y = Math.min(y1, y2);
|
|
double w = Math.abs(x1 - x2);
|
|
double h = Math.abs(y1 - y2);
|
|
return new Rectangle2D.Double(x, y, w, h);
|
|
}
|
|
} // class Double
|
|
|
|
/**
|
|
* This class defines a point in <code>float</code> precision.
|
|
*
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
|
* @since 1.2
|
|
* @status updated to 1.4
|
|
*/
|
|
public static class Float extends Line2D
|
|
{
|
|
/** The x coordinate of the first point. */
|
|
public float x1;
|
|
|
|
/** The y coordinate of the first point. */
|
|
public float y1;
|
|
|
|
/** The x coordinate of the second point. */
|
|
public float x2;
|
|
|
|
/** The y coordinate of the second point. */
|
|
public float y2;
|
|
|
|
/**
|
|
* Construct the line segment (0,0)->(0,0).
|
|
*/
|
|
public Float()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Construct the line segment with the specified points.
|
|
*
|
|
* @param x1 the x coordinate of the first point
|
|
* @param y1 the y coordinate of the first point
|
|
* @param x2 the x coordinate of the second point
|
|
* @param y2 the y coordinate of the second point
|
|
*/
|
|
public Float(float x1, float y1, float x2, float y2)
|
|
{
|
|
this.x1 = x1;
|
|
this.y1 = y1;
|
|
this.x2 = x2;
|
|
this.y2 = y2;
|
|
}
|
|
|
|
/**
|
|
* Construct the line segment with the specified points.
|
|
*
|
|
* @param p1 the first point
|
|
* @param p2 the second point
|
|
* @throws NullPointerException if either point is null
|
|
*/
|
|
public Float(Point2D p1, Point2D p2)
|
|
{
|
|
x1 = (float) p1.getX();
|
|
y1 = (float) p1.getY();
|
|
x2 = (float) p2.getX();
|
|
y2 = (float) p2.getY();
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the first point.
|
|
*
|
|
* @return the value of x1
|
|
*/
|
|
public double getX1()
|
|
{
|
|
return x1;
|
|
}
|
|
|
|
/**
|
|
* Return the y coordinate of the first point.
|
|
*
|
|
* @return the value of y1
|
|
*/
|
|
public double getY1()
|
|
{
|
|
return y1;
|
|
}
|
|
|
|
/**
|
|
* Return the first point.
|
|
*
|
|
* @return the point (x1,y1)
|
|
*/
|
|
public Point2D getP1()
|
|
{
|
|
return new Point2D.Float(x1, y1);
|
|
}
|
|
|
|
/**
|
|
* Return the x coordinate of the second point.
|
|
*
|
|
* @return the value of x2
|
|
*/
|
|
public double getX2()
|
|
{
|
|
return x2;
|
|
}
|
|
|
|
/**
|
|
* Return the y coordinate of the second point.
|
|
*
|
|
* @return the value of y2
|
|
*/
|
|
public double getY2()
|
|
{
|
|
return y2;
|
|
}
|
|
|
|
/**
|
|
* Return the second point.
|
|
*
|
|
* @return the point (x2,y2)
|
|
*/
|
|
public Point2D getP2()
|
|
{
|
|
return new Point2D.Float(x2, y2);
|
|
}
|
|
|
|
/**
|
|
* Set this line to the given points.
|
|
*
|
|
* @param x1 the new x coordinate of the first point
|
|
* @param y1 the new y coordinate of the first point
|
|
* @param x2 the new x coordinate of the second point
|
|
* @param y2 the new y coordinate of the second point
|
|
*/
|
|
public void setLine(double x1, double y1, double x2, double y2)
|
|
{
|
|
this.x1 = (float) x1;
|
|
this.y1 = (float) y1;
|
|
this.x2 = (float) x2;
|
|
this.y2 = (float) y2;
|
|
}
|
|
|
|
/**
|
|
* Set this line to the given points.
|
|
*
|
|
* @param x1 the new x coordinate of the first point
|
|
* @param y1 the new y coordinate of the first point
|
|
* @param x2 the new x coordinate of the second point
|
|
* @param y2 the new y coordinate of the second point
|
|
*/
|
|
public void setLine(float x1, float y1, float x2, float y2)
|
|
{
|
|
this.x1 = x1;
|
|
this.y1 = y1;
|
|
this.x2 = x2;
|
|
this.y2 = y2;
|
|
}
|
|
|
|
/**
|
|
* Return the exact bounds of this line segment.
|
|
*
|
|
* @return the bounding box
|
|
*/
|
|
public Rectangle2D getBounds2D()
|
|
{
|
|
float x = Math.min(x1, x2);
|
|
float y = Math.min(y1, y2);
|
|
float w = Math.abs(x1 - x2);
|
|
float h = Math.abs(y1 - y2);
|
|
return new Rectangle2D.Float(x, y, w, h);
|
|
}
|
|
} // class Float
|
|
} // class Line2D
|