mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-23 15:32:26 +00:00
503 lines
13 KiB
C
503 lines
13 KiB
C
/*
|
|
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
|
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
|
* Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program
|
|
* for any purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is granted,
|
|
* provided the above notices are retained, and a notice that the code was
|
|
* modified is included with the above copyright notice.
|
|
*/
|
|
/* Boehm, February 7, 1996 4:32 pm PST */
|
|
|
|
#include <stdio.h>
|
|
#include "private/gc_priv.h"
|
|
|
|
extern ptr_t GC_clear_stack(); /* in misc.c, behaves like identity */
|
|
void GC_extend_size_map(); /* in misc.c. */
|
|
|
|
/* Allocate reclaim list for kind: */
|
|
/* Return TRUE on success */
|
|
GC_bool GC_alloc_reclaim_list(kind)
|
|
register struct obj_kind * kind;
|
|
{
|
|
struct hblk ** result = (struct hblk **)
|
|
GC_scratch_alloc((MAXOBJSZ+1) * sizeof(struct hblk *));
|
|
if (result == 0) return(FALSE);
|
|
BZERO(result, (MAXOBJSZ+1)*sizeof(struct hblk *));
|
|
kind -> ok_reclaim_list = result;
|
|
return(TRUE);
|
|
}
|
|
|
|
/* Allocate a large block of size lw words. */
|
|
/* The block is not cleared. */
|
|
/* Flags is 0 or IGNORE_OFF_PAGE. */
|
|
/* We hold the allocation lock. */
|
|
ptr_t GC_alloc_large(lw, k, flags)
|
|
word lw;
|
|
int k;
|
|
unsigned flags;
|
|
{
|
|
struct hblk * h;
|
|
word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
|
|
ptr_t result;
|
|
|
|
if (!GC_is_initialized) GC_init_inner();
|
|
/* Do our share of marking work */
|
|
if(GC_incremental && !GC_dont_gc)
|
|
GC_collect_a_little_inner((int)n_blocks);
|
|
h = GC_allochblk(lw, k, flags);
|
|
# ifdef USE_MUNMAP
|
|
if (0 == h) {
|
|
GC_merge_unmapped();
|
|
h = GC_allochblk(lw, k, flags);
|
|
}
|
|
# endif
|
|
while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {
|
|
h = GC_allochblk(lw, k, flags);
|
|
}
|
|
if (h == 0) {
|
|
result = 0;
|
|
} else {
|
|
int total_bytes = n_blocks * HBLKSIZE;
|
|
if (n_blocks > 1) {
|
|
GC_large_allocd_bytes += total_bytes;
|
|
if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
|
|
GC_max_large_allocd_bytes = GC_large_allocd_bytes;
|
|
}
|
|
result = (ptr_t) (h -> hb_body);
|
|
GC_words_wasted += BYTES_TO_WORDS(total_bytes) - lw;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Allocate a large block of size lb bytes. Clear if appropriate. */
|
|
/* We hold the allocation lock. */
|
|
ptr_t GC_alloc_large_and_clear(lw, k, flags)
|
|
word lw;
|
|
int k;
|
|
unsigned flags;
|
|
{
|
|
ptr_t result = GC_alloc_large(lw, k, flags);
|
|
word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
|
|
|
|
if (0 == result) return 0;
|
|
if (GC_debugging_started || GC_obj_kinds[k].ok_init) {
|
|
/* Clear the whole block, in case of GC_realloc call. */
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* allocate lb bytes for an object of kind k. */
|
|
/* Should not be used to directly to allocate */
|
|
/* objects such as STUBBORN objects that */
|
|
/* require special handling on allocation. */
|
|
/* First a version that assumes we already */
|
|
/* hold lock: */
|
|
ptr_t GC_generic_malloc_inner(lb, k)
|
|
register word lb;
|
|
register int k;
|
|
{
|
|
register word lw;
|
|
register ptr_t op;
|
|
register ptr_t *opp;
|
|
|
|
if( SMALL_OBJ(lb) ) {
|
|
register struct obj_kind * kind = GC_obj_kinds + k;
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb];
|
|
# else
|
|
lw = ALIGNED_WORDS(lb);
|
|
if (lw == 0) lw = MIN_WORDS;
|
|
# endif
|
|
opp = &(kind -> ok_freelist[lw]);
|
|
if( (op = *opp) == 0 ) {
|
|
# ifdef MERGE_SIZES
|
|
if (GC_size_map[lb] == 0) {
|
|
if (!GC_is_initialized) GC_init_inner();
|
|
if (GC_size_map[lb] == 0) GC_extend_size_map(lb);
|
|
return(GC_generic_malloc_inner(lb, k));
|
|
}
|
|
# else
|
|
if (!GC_is_initialized) {
|
|
GC_init_inner();
|
|
return(GC_generic_malloc_inner(lb, k));
|
|
}
|
|
# endif
|
|
if (kind -> ok_reclaim_list == 0) {
|
|
if (!GC_alloc_reclaim_list(kind)) goto out;
|
|
}
|
|
op = GC_allocobj(lw, k);
|
|
if (op == 0) goto out;
|
|
}
|
|
/* Here everything is in a consistent state. */
|
|
/* We assume the following assignment is */
|
|
/* atomic. If we get aborted */
|
|
/* after the assignment, we lose an object, */
|
|
/* but that's benign. */
|
|
/* Volatile declarations may need to be added */
|
|
/* to prevent the compiler from breaking things.*/
|
|
/* If we only execute the second of the */
|
|
/* following assignments, we lose the free */
|
|
/* list, but that should still be OK, at least */
|
|
/* for garbage collected memory. */
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
} else {
|
|
lw = ROUNDED_UP_WORDS(lb);
|
|
op = (ptr_t)GC_alloc_large_and_clear(lw, k, 0);
|
|
}
|
|
GC_words_allocd += lw;
|
|
|
|
out:
|
|
return op;
|
|
}
|
|
|
|
/* Allocate a composite object of size n bytes. The caller guarantees */
|
|
/* that pointers past the first page are not relevant. Caller holds */
|
|
/* allocation lock. */
|
|
ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)
|
|
register size_t lb;
|
|
register int k;
|
|
{
|
|
register word lw;
|
|
ptr_t op;
|
|
|
|
if (lb <= HBLKSIZE)
|
|
return(GC_generic_malloc_inner((word)lb, k));
|
|
lw = ROUNDED_UP_WORDS(lb);
|
|
op = (ptr_t)GC_alloc_large_and_clear(lw, k, IGNORE_OFF_PAGE);
|
|
GC_words_allocd += lw;
|
|
return op;
|
|
}
|
|
|
|
ptr_t GC_generic_malloc(lb, k)
|
|
register word lb;
|
|
register int k;
|
|
{
|
|
ptr_t result;
|
|
DCL_LOCK_STATE;
|
|
|
|
if (GC_have_errors) GC_print_all_errors();
|
|
GC_INVOKE_FINALIZERS();
|
|
if (SMALL_OBJ(lb)) {
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
result = GC_generic_malloc_inner((word)lb, k);
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
} else {
|
|
word lw;
|
|
word n_blocks;
|
|
GC_bool init;
|
|
lw = ROUNDED_UP_WORDS(lb);
|
|
n_blocks = OBJ_SZ_TO_BLOCKS(lw);
|
|
init = GC_obj_kinds[k].ok_init;
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
result = (ptr_t)GC_alloc_large(lw, k, 0);
|
|
if (0 != result) {
|
|
if (GC_debugging_started) {
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
} else {
|
|
# ifdef THREADS
|
|
/* Clear any memory that might be used for GC descriptors */
|
|
/* before we release the lock. */
|
|
((word *)result)[0] = 0;
|
|
((word *)result)[1] = 0;
|
|
((word *)result)[lw-1] = 0;
|
|
((word *)result)[lw-2] = 0;
|
|
# endif
|
|
}
|
|
}
|
|
GC_words_allocd += lw;
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
if (init && !GC_debugging_started && 0 != result) {
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
}
|
|
}
|
|
if (0 == result) {
|
|
return((*GC_oom_fn)(lb));
|
|
} else {
|
|
return(result);
|
|
}
|
|
}
|
|
|
|
|
|
#define GENERAL_MALLOC(lb,k) \
|
|
(GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
|
|
/* We make the GC_clear_stack_call a tail call, hoping to get more of */
|
|
/* the stack. */
|
|
|
|
/* Allocate lb bytes of atomic (pointerfree) data */
|
|
# ifdef __STDC__
|
|
GC_PTR GC_malloc_atomic(size_t lb)
|
|
# else
|
|
GC_PTR GC_malloc_atomic(lb)
|
|
size_t lb;
|
|
# endif
|
|
{
|
|
register ptr_t op;
|
|
register ptr_t * opp;
|
|
register word lw;
|
|
DCL_LOCK_STATE;
|
|
|
|
if( EXPECT(SMALL_OBJ(lb), 1) ) {
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb];
|
|
# else
|
|
lw = ALIGNED_WORDS(lb);
|
|
# endif
|
|
opp = &(GC_aobjfreelist[lw]);
|
|
FASTLOCK();
|
|
if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
|
|
FASTUNLOCK();
|
|
return(GENERAL_MALLOC((word)lb, PTRFREE));
|
|
}
|
|
/* See above comment on signals. */
|
|
*opp = obj_link(op);
|
|
GC_words_allocd += lw;
|
|
FASTUNLOCK();
|
|
return((GC_PTR) op);
|
|
} else {
|
|
return(GENERAL_MALLOC((word)lb, PTRFREE));
|
|
}
|
|
}
|
|
|
|
/* Allocate lb bytes of composite (pointerful) data */
|
|
# ifdef __STDC__
|
|
GC_PTR GC_malloc(size_t lb)
|
|
# else
|
|
GC_PTR GC_malloc(lb)
|
|
size_t lb;
|
|
# endif
|
|
{
|
|
register ptr_t op;
|
|
register ptr_t *opp;
|
|
register word lw;
|
|
DCL_LOCK_STATE;
|
|
|
|
if( EXPECT(SMALL_OBJ(lb), 1) ) {
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb];
|
|
# else
|
|
lw = ALIGNED_WORDS(lb);
|
|
# endif
|
|
opp = &(GC_objfreelist[lw]);
|
|
FASTLOCK();
|
|
if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
|
|
FASTUNLOCK();
|
|
return(GENERAL_MALLOC((word)lb, NORMAL));
|
|
}
|
|
/* See above comment on signals. */
|
|
GC_ASSERT(0 == obj_link(op)
|
|
|| (word)obj_link(op)
|
|
<= (word)GC_greatest_plausible_heap_addr
|
|
&& (word)obj_link(op)
|
|
>= (word)GC_least_plausible_heap_addr);
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
GC_words_allocd += lw;
|
|
FASTUNLOCK();
|
|
return((GC_PTR) op);
|
|
} else {
|
|
return(GENERAL_MALLOC((word)lb, NORMAL));
|
|
}
|
|
}
|
|
|
|
# ifdef REDIRECT_MALLOC
|
|
|
|
/* Avoid unnecessary nested procedure calls here, by #defining some */
|
|
/* malloc replacements. Otherwise we end up saving a */
|
|
/* meaningless return address in the object. It also speeds things up, */
|
|
/* but it is admittedly quite ugly. */
|
|
# ifdef GC_ADD_CALLER
|
|
# define RA GC_RETURN_ADDR,
|
|
# else
|
|
# define RA
|
|
# endif
|
|
# define GC_debug_malloc_replacement(lb) \
|
|
GC_debug_malloc(lb, RA "unknown", 0)
|
|
|
|
# ifdef __STDC__
|
|
GC_PTR malloc(size_t lb)
|
|
# else
|
|
GC_PTR malloc(lb)
|
|
size_t lb;
|
|
# endif
|
|
{
|
|
/* It might help to manually inline the GC_malloc call here. */
|
|
/* But any decent compiler should reduce the extra procedure call */
|
|
/* to at most a jump instruction in this case. */
|
|
# if defined(I386) && defined(GC_SOLARIS_THREADS)
|
|
/*
|
|
* Thread initialisation can call malloc before
|
|
* we're ready for it.
|
|
* It's not clear that this is enough to help matters.
|
|
* The thread implementation may well call malloc at other
|
|
* inopportune times.
|
|
*/
|
|
if (!GC_is_initialized) return sbrk(lb);
|
|
# endif /* I386 && GC_SOLARIS_THREADS */
|
|
return((GC_PTR)REDIRECT_MALLOC(lb));
|
|
}
|
|
|
|
# ifdef __STDC__
|
|
GC_PTR calloc(size_t n, size_t lb)
|
|
# else
|
|
GC_PTR calloc(n, lb)
|
|
size_t n, lb;
|
|
# endif
|
|
{
|
|
return((GC_PTR)REDIRECT_MALLOC(n*lb));
|
|
}
|
|
|
|
#ifndef strdup
|
|
# include <string.h>
|
|
# ifdef __STDC__
|
|
char *strdup(const char *s)
|
|
# else
|
|
char *strdup(s)
|
|
char *s;
|
|
# endif
|
|
{
|
|
size_t len = strlen(s) + 1;
|
|
char * result = ((char *)REDIRECT_MALLOC(len+1));
|
|
BCOPY(s, result, len+1);
|
|
return result;
|
|
}
|
|
#endif /* !defined(strdup) */
|
|
/* If strdup is macro defined, we assume that it actually calls malloc, */
|
|
/* and thus the right thing will happen even without overriding it. */
|
|
/* This seems to be true on most Linux systems. */
|
|
|
|
#undef GC_debug_malloc_replacement
|
|
|
|
# endif /* REDIRECT_MALLOC */
|
|
|
|
/* Explicitly deallocate an object p. */
|
|
# ifdef __STDC__
|
|
void GC_free(GC_PTR p)
|
|
# else
|
|
void GC_free(p)
|
|
GC_PTR p;
|
|
# endif
|
|
{
|
|
register struct hblk *h;
|
|
register hdr *hhdr;
|
|
register signed_word sz;
|
|
register ptr_t * flh;
|
|
register int knd;
|
|
register struct obj_kind * ok;
|
|
DCL_LOCK_STATE;
|
|
|
|
if (p == 0) return;
|
|
/* Required by ANSI. It's not my fault ... */
|
|
h = HBLKPTR(p);
|
|
hhdr = HDR(h);
|
|
GC_ASSERT(GC_base(p) == p);
|
|
# if defined(REDIRECT_MALLOC) && \
|
|
(defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
|
|
|| defined(__MINGW32__)) /* Should this be MSWIN32 in general? */
|
|
/* For Solaris, we have to redirect malloc calls during */
|
|
/* initialization. For the others, this seems to happen */
|
|
/* implicitly. */
|
|
/* Don't try to deallocate that memory. */
|
|
if (0 == hhdr) return;
|
|
# endif
|
|
knd = hhdr -> hb_obj_kind;
|
|
sz = hhdr -> hb_sz;
|
|
ok = &GC_obj_kinds[knd];
|
|
if (EXPECT((sz <= MAXOBJSZ), 1)) {
|
|
# ifdef THREADS
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
# endif
|
|
GC_mem_freed += sz;
|
|
/* A signal here can make GC_mem_freed and GC_non_gc_bytes */
|
|
/* inconsistent. We claim this is benign. */
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
|
|
/* Its unnecessary to clear the mark bit. If the */
|
|
/* object is reallocated, it doesn't matter. O.w. the */
|
|
/* collector will do it, since it's on a free list. */
|
|
if (ok -> ok_init) {
|
|
BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
|
|
}
|
|
flh = &(ok -> ok_freelist[sz]);
|
|
obj_link(p) = *flh;
|
|
*flh = (ptr_t)p;
|
|
# ifdef THREADS
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
# endif
|
|
} else {
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
GC_mem_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
|
|
GC_freehblk(h);
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
}
|
|
}
|
|
|
|
/* Explicitly deallocate an object p when we already hold lock. */
|
|
/* Only used for internally allocated objects, so we can take some */
|
|
/* shortcuts. */
|
|
#ifdef THREADS
|
|
void GC_free_inner(GC_PTR p)
|
|
{
|
|
register struct hblk *h;
|
|
register hdr *hhdr;
|
|
register signed_word sz;
|
|
register ptr_t * flh;
|
|
register int knd;
|
|
register struct obj_kind * ok;
|
|
DCL_LOCK_STATE;
|
|
|
|
h = HBLKPTR(p);
|
|
hhdr = HDR(h);
|
|
knd = hhdr -> hb_obj_kind;
|
|
sz = hhdr -> hb_sz;
|
|
ok = &GC_obj_kinds[knd];
|
|
if (sz <= MAXOBJSZ) {
|
|
GC_mem_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
|
|
if (ok -> ok_init) {
|
|
BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
|
|
}
|
|
flh = &(ok -> ok_freelist[sz]);
|
|
obj_link(p) = *flh;
|
|
*flh = (ptr_t)p;
|
|
} else {
|
|
GC_mem_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
|
|
GC_freehblk(h);
|
|
}
|
|
}
|
|
#endif /* THREADS */
|
|
|
|
# if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
|
|
# define REDIRECT_FREE GC_free
|
|
# endif
|
|
# ifdef REDIRECT_FREE
|
|
# ifdef __STDC__
|
|
void free(GC_PTR p)
|
|
# else
|
|
void free(p)
|
|
GC_PTR p;
|
|
# endif
|
|
{
|
|
# ifndef IGNORE_FREE
|
|
REDIRECT_FREE(p);
|
|
# endif
|
|
}
|
|
# endif /* REDIRECT_MALLOC */
|