mirror of
https://github.com/autc04/Retro68.git
synced 2025-01-28 11:30:32 +00:00
781 lines
20 KiB
ArmAsm
781 lines
20 KiB
ArmAsm
/* mips16 floating point support code
|
|
Copyright (C) 1996-2016 Free Software Foundation, Inc.
|
|
Contributed by Cygnus Support
|
|
|
|
This file is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
This file is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "auto-host.h"
|
|
|
|
#if defined(__mips_micromips) || defined(__mips_soft_float) \
|
|
|| __mips_isa_rev >= 6
|
|
/* Do nothing because this code is only needed when linking
|
|
against mips16 hard-float objects. Neither micromips code
|
|
nor soft-float nor MIPS R6 code can be linked against mips16
|
|
hard-float objects so we do not need these routines when
|
|
building libgcc for those cases. */
|
|
#else
|
|
|
|
#if defined(HAVE_AS_MODULE)
|
|
#if __mips_fpr == 32
|
|
.module fp=32
|
|
#elif __mips_fpr == 0
|
|
.module fp=xx
|
|
#elif __mips_fpr == 64
|
|
.module fp=64
|
|
#endif
|
|
#endif
|
|
|
|
/* This file contains mips16 floating point support functions. These
|
|
functions are called by mips16 code to handle floating point when
|
|
-msoft-float is not used. They accept the arguments and return
|
|
values using the soft-float calling convention, but do the actual
|
|
operation using the hard floating point instructions. */
|
|
|
|
#if defined _MIPS_SIM && (_MIPS_SIM == _ABIO32 || _MIPS_SIM == _ABIO64)
|
|
|
|
/* This file contains 32-bit assembly code. */
|
|
.set nomips16
|
|
|
|
/* Start a function. */
|
|
|
|
#define STARTFN(NAME) .globl NAME; .ent NAME; NAME:
|
|
|
|
/* Finish a function. */
|
|
|
|
#define ENDFN(NAME) .end NAME
|
|
|
|
/* ARG1
|
|
The FPR that holds the first floating-point argument.
|
|
|
|
ARG2
|
|
The FPR that holds the second floating-point argument.
|
|
|
|
RET
|
|
The FPR that holds a floating-point return value. */
|
|
|
|
#define RET $f0
|
|
#define ARG1 $f12
|
|
#ifdef __mips64
|
|
#define ARG2 $f13
|
|
#else
|
|
#define ARG2 $f14
|
|
#endif
|
|
|
|
/* Set 64-bit register GPR so that its high 32 bits contain HIGH_FPR
|
|
and so that its low 32 bits contain LOW_FPR. */
|
|
#define MERGE_GPRf(GPR, HIGH_FPR, LOW_FPR) \
|
|
.set noat; \
|
|
mfc1 $1, LOW_FPR; \
|
|
mfc1 GPR, HIGH_FPR; \
|
|
dsll $1, $1, 32; \
|
|
dsll GPR, GPR, 32; \
|
|
dsrl $1, $1, 32; \
|
|
or GPR, GPR, $1; \
|
|
.set at
|
|
|
|
/* Move the high 32 bits of GPR to HIGH_FPR and the low 32 bits of
|
|
GPR to LOW_FPR. */
|
|
#define MERGE_GPRt(GPR, HIGH_FPR, LOW_FPR) \
|
|
.set noat; \
|
|
dsrl $1, GPR, 32; \
|
|
mtc1 GPR, LOW_FPR; \
|
|
mtc1 $1, HIGH_FPR; \
|
|
.set at
|
|
|
|
/* Jump to T, and use "OPCODE, OP2" to implement a delayed move. */
|
|
#define DELAYt(T, OPCODE, OP2) \
|
|
.set noreorder; \
|
|
jr T; \
|
|
OPCODE, OP2; \
|
|
.set reorder
|
|
|
|
#if __mips >= 4
|
|
/* Coprocessor moves are interlocked from the MIPS IV ISA up. */
|
|
#define DELAYf(T, OPCODE, OP2) DELAYt (T, OPCODE, OP2)
|
|
#else
|
|
/* Use "OPCODE. OP2" and jump to T. */
|
|
#define DELAYf(T, OPCODE, OP2) OPCODE, OP2; jr T
|
|
#endif
|
|
|
|
/* MOVE_SF_BYTE0(D)
|
|
Move the first single-precision floating-point argument between
|
|
GPRs and FPRs.
|
|
|
|
MOVE_SI_BYTE0(D)
|
|
Likewise the first single-precision integer argument.
|
|
|
|
MOVE_SF_BYTE4(D)
|
|
Move the second single-precision floating-point argument between
|
|
GPRs and FPRs, given that the first argument occupies 4 bytes.
|
|
|
|
MOVE_SF_BYTE8(D)
|
|
Move the second single-precision floating-point argument between
|
|
GPRs and FPRs, given that the first argument occupies 8 bytes.
|
|
|
|
MOVE_DF_BYTE0(D)
|
|
Move the first double-precision floating-point argument between
|
|
GPRs and FPRs.
|
|
|
|
MOVE_DF_BYTE8(D)
|
|
Likewise the second double-precision floating-point argument.
|
|
|
|
MOVE_SF_RET(D, T)
|
|
Likewise a single-precision floating-point return value,
|
|
then jump to T.
|
|
|
|
MOVE_SC_RET(D, T)
|
|
Likewise a complex single-precision floating-point return value.
|
|
|
|
MOVE_DF_RET(D, T)
|
|
Likewise a double-precision floating-point return value.
|
|
|
|
MOVE_DC_RET(D, T)
|
|
Likewise a complex double-precision floating-point return value.
|
|
|
|
MOVE_SI_RET(D, T)
|
|
Likewise a single-precision integer return value.
|
|
|
|
The D argument is "t" to move to FPRs and "f" to move from FPRs.
|
|
The return macros may assume that the target of the jump does not
|
|
use a floating-point register. */
|
|
|
|
#define MOVE_SF_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
|
|
#define MOVE_SI_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
|
|
|
|
#if defined(__mips64) && defined(__MIPSEB__)
|
|
#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f0, $f1); jr T
|
|
#elif defined(__mips64)
|
|
/* The high 32 bits of $2 correspond to the second word in memory;
|
|
i.e. the imaginary part. */
|
|
#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f1, $f0); jr T
|
|
#else
|
|
#define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f2)
|
|
#endif
|
|
|
|
#if defined(__mips64)
|
|
#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
|
|
#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f13
|
|
#define MOVE_SF_BYTE8(D) m##D##c1 $5,$f13
|
|
#else
|
|
#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
|
|
#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f14
|
|
#define MOVE_SF_BYTE8(D) m##D##c1 $6,$f14
|
|
#endif
|
|
#define MOVE_SI_BYTE0(D) MOVE_SF_BYTE0(D)
|
|
|
|
#if defined(__mips64)
|
|
#define MOVE_DF_BYTE0(D) dm##D##c1 $4,$f12
|
|
#define MOVE_DF_BYTE8(D) dm##D##c1 $5,$f13
|
|
#define MOVE_DF_RET(D, T) DELAY##D (T, dm##D##c1 $2,$f0)
|
|
#define MOVE_DC_RET(D, T) dm##D##c1 $3,$f1; MOVE_DF_RET (D, T)
|
|
#elif __mips_fpr != 32 && __mips_isa_rev >= 2 && defined(__MIPSEB__)
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $5,$f12; m##D##hc1 $4,$f12
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $7,$f14; m##D##hc1 $6,$f14
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $3,$f0; DELAY##D (T, m##D##hc1 $2,$f0)
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $5,$f2; m##D##hc1 $4,$f2; MOVE_DF_RET (D, T)
|
|
#elif __mips_fpr != 32 && __mips_isa_rev >= 2
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##hc1 $5,$f12
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##hc1 $7,$f14
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##hc1 $3,$f0)
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##hc1 $5,$f2; MOVE_DF_RET (D, T)
|
|
#elif __mips_fpr == 0
|
|
#define MOVE_DF_BYTE0t sw $4, 0($29); sw $5, 4($29); ldc1 $f12, 0($29)
|
|
#define MOVE_DF_BYTE0f sdc1 $f12, 0($29); lw $4, 0($29); lw $5, 4($29)
|
|
#define MOVE_DF_BYTE0(D) MOVE_DF_BYTE0##D
|
|
#define MOVE_DF_BYTE8t sw $6, 8($29); sw $7, 12($29); ldc1 $f14, 8($29)
|
|
#define MOVE_DF_BYTE8f sdc1 $f14, 8($29); lw $6, 8($29); lw $7, 12($29)
|
|
#define MOVE_DF_BYTE8(D) MOVE_DF_BYTE8##D
|
|
#define MOVE_DF_RETt(T) sw $2, 0($29); sw $3, 4($29); DELAYt (T, ldc1 $f0, 0($29))
|
|
#define MOVE_DF_RETf(T) sdc1 $f0, 0($29); lw $2, 0($29); DELAYf (T, lw $3, 4($29))
|
|
#define MOVE_DF_RET(D, T) MOVE_DF_RET##D(T)
|
|
#define MOVE_DC_RETt(T) sw $4, 8($29); sw $5, 12($29); ldc1 $f2, 8($29); MOVE_DF_RETt(T)
|
|
#define MOVE_DC_RETf(T) sdc1 $f2, 8($29); lw $4, 8($29); lw $5, 12($29); MOVE_DF_RETf(T)
|
|
#define MOVE_DC_RET(D, T) MOVE_DF_RET##D(T)
|
|
#elif defined(__MIPSEB__)
|
|
/* FPRs are little-endian. */
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f13; m##D##c1 $5,$f12
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f15; m##D##c1 $7,$f14
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f1; DELAY##D (T, m##D##c1 $3,$f0)
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f3; m##D##c1 $5,$f2; MOVE_DF_RET (D, T)
|
|
#else
|
|
#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##c1 $5,$f13
|
|
#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##c1 $7,$f15
|
|
#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1)
|
|
#define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##c1 $5,$f3; MOVE_DF_RET (D, T)
|
|
#endif
|
|
|
|
/* Single-precision math. */
|
|
|
|
/* Define a function NAME that loads two single-precision values,
|
|
performs FPU operation OPCODE on them, and returns the single-
|
|
precision result. */
|
|
|
|
#define OPSF3(NAME, OPCODE) \
|
|
STARTFN (NAME); \
|
|
MOVE_SF_BYTE0 (t); \
|
|
MOVE_SF_BYTE4 (t); \
|
|
OPCODE RET,ARG1,ARG2; \
|
|
MOVE_SF_RET (f, $31); \
|
|
ENDFN (NAME)
|
|
|
|
#ifdef L_m16addsf3
|
|
OPSF3 (__mips16_addsf3, add.s)
|
|
#endif
|
|
#ifdef L_m16subsf3
|
|
OPSF3 (__mips16_subsf3, sub.s)
|
|
#endif
|
|
#ifdef L_m16mulsf3
|
|
OPSF3 (__mips16_mulsf3, mul.s)
|
|
#endif
|
|
#ifdef L_m16divsf3
|
|
OPSF3 (__mips16_divsf3, div.s)
|
|
#endif
|
|
|
|
/* Define a function NAME that loads a single-precision value,
|
|
performs FPU operation OPCODE on it, and returns the single-
|
|
precision result. */
|
|
|
|
#define OPSF2(NAME, OPCODE) \
|
|
STARTFN (NAME); \
|
|
MOVE_SF_BYTE0 (t); \
|
|
OPCODE RET,ARG1; \
|
|
MOVE_SF_RET (f, $31); \
|
|
ENDFN (NAME)
|
|
|
|
#ifdef L_m16negsf2
|
|
OPSF2 (__mips16_negsf2, neg.s)
|
|
#endif
|
|
#ifdef L_m16abssf2
|
|
OPSF2 (__mips16_abssf2, abs.s)
|
|
#endif
|
|
|
|
/* Single-precision comparisons. */
|
|
|
|
/* Define a function NAME that loads two single-precision values,
|
|
performs floating point comparison OPCODE, and returns TRUE or
|
|
FALSE depending on the result. */
|
|
|
|
#define CMPSF(NAME, OPCODE, TRUE, FALSE) \
|
|
STARTFN (NAME); \
|
|
MOVE_SF_BYTE0 (t); \
|
|
MOVE_SF_BYTE4 (t); \
|
|
OPCODE ARG1,ARG2; \
|
|
li $2,TRUE; \
|
|
bc1t 1f; \
|
|
li $2,FALSE; \
|
|
1:; \
|
|
j $31; \
|
|
ENDFN (NAME)
|
|
|
|
/* Like CMPSF, but reverse the comparison operands. */
|
|
|
|
#define REVCMPSF(NAME, OPCODE, TRUE, FALSE) \
|
|
STARTFN (NAME); \
|
|
MOVE_SF_BYTE0 (t); \
|
|
MOVE_SF_BYTE4 (t); \
|
|
OPCODE ARG2,ARG1; \
|
|
li $2,TRUE; \
|
|
bc1t 1f; \
|
|
li $2,FALSE; \
|
|
1:; \
|
|
j $31; \
|
|
ENDFN (NAME)
|
|
|
|
#ifdef L_m16eqsf2
|
|
CMPSF (__mips16_eqsf2, c.eq.s, 0, 1)
|
|
#endif
|
|
#ifdef L_m16nesf2
|
|
CMPSF (__mips16_nesf2, c.eq.s, 0, 1)
|
|
#endif
|
|
#ifdef L_m16gtsf2
|
|
REVCMPSF (__mips16_gtsf2, c.lt.s, 1, 0)
|
|
#endif
|
|
#ifdef L_m16gesf2
|
|
REVCMPSF (__mips16_gesf2, c.le.s, 0, -1)
|
|
#endif
|
|
#ifdef L_m16lesf2
|
|
CMPSF (__mips16_lesf2, c.le.s, 0, 1)
|
|
#endif
|
|
#ifdef L_m16ltsf2
|
|
CMPSF (__mips16_ltsf2, c.lt.s, -1, 0)
|
|
#endif
|
|
#ifdef L_m16unordsf2
|
|
CMPSF(__mips16_unordsf2, c.un.s, 1, 0)
|
|
#endif
|
|
|
|
|
|
/* Single-precision conversions. */
|
|
|
|
#ifdef L_m16fltsisf
|
|
STARTFN (__mips16_floatsisf)
|
|
MOVE_SF_BYTE0 (t)
|
|
cvt.s.w RET,ARG1
|
|
MOVE_SF_RET (f, $31)
|
|
ENDFN (__mips16_floatsisf)
|
|
#endif
|
|
|
|
#ifdef L_m16fltunsisf
|
|
STARTFN (__mips16_floatunsisf)
|
|
.set noreorder
|
|
bltz $4,1f
|
|
MOVE_SF_BYTE0 (t)
|
|
.set reorder
|
|
cvt.s.w RET,ARG1
|
|
MOVE_SF_RET (f, $31)
|
|
1:
|
|
and $2,$4,1
|
|
srl $3,$4,1
|
|
or $2,$2,$3
|
|
mtc1 $2,RET
|
|
cvt.s.w RET,RET
|
|
add.s RET,RET,RET
|
|
MOVE_SF_RET (f, $31)
|
|
ENDFN (__mips16_floatunsisf)
|
|
#endif
|
|
|
|
#ifdef L_m16fix_truncsfsi
|
|
STARTFN (__mips16_fix_truncsfsi)
|
|
MOVE_SF_BYTE0 (t)
|
|
trunc.w.s RET,ARG1,$4
|
|
MOVE_SI_RET (f, $31)
|
|
ENDFN (__mips16_fix_truncsfsi)
|
|
#endif
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
|
|
/* Double-precision math. */
|
|
|
|
/* Define a function NAME that loads two double-precision values,
|
|
performs FPU operation OPCODE on them, and returns the double-
|
|
precision result. */
|
|
|
|
#define OPDF3(NAME, OPCODE) \
|
|
STARTFN (NAME); \
|
|
MOVE_DF_BYTE0 (t); \
|
|
MOVE_DF_BYTE8 (t); \
|
|
OPCODE RET,ARG1,ARG2; \
|
|
MOVE_DF_RET (f, $31); \
|
|
ENDFN (NAME)
|
|
|
|
#ifdef L_m16adddf3
|
|
OPDF3 (__mips16_adddf3, add.d)
|
|
#endif
|
|
#ifdef L_m16subdf3
|
|
OPDF3 (__mips16_subdf3, sub.d)
|
|
#endif
|
|
#ifdef L_m16muldf3
|
|
OPDF3 (__mips16_muldf3, mul.d)
|
|
#endif
|
|
#ifdef L_m16divdf3
|
|
OPDF3 (__mips16_divdf3, div.d)
|
|
#endif
|
|
|
|
/* Define a function NAME that loads a double-precision value,
|
|
performs FPU operation OPCODE on it, and returns the double-
|
|
precision result. */
|
|
|
|
#define OPDF2(NAME, OPCODE) \
|
|
STARTFN (NAME); \
|
|
MOVE_DF_BYTE0 (t); \
|
|
OPCODE RET,ARG1; \
|
|
MOVE_DF_RET (f, $31); \
|
|
ENDFN (NAME)
|
|
|
|
#ifdef L_m16negdf2
|
|
OPDF2 (__mips16_negdf2, neg.d)
|
|
#endif
|
|
#ifdef L_m16absdf2
|
|
OPDF2 (__mips16_absdf2, abs.d)
|
|
#endif
|
|
|
|
/* Conversions between single and double precision. */
|
|
|
|
#ifdef L_m16extsfdf2
|
|
STARTFN (__mips16_extendsfdf2)
|
|
MOVE_SF_BYTE0 (t)
|
|
cvt.d.s RET,ARG1
|
|
MOVE_DF_RET (f, $31)
|
|
ENDFN (__mips16_extendsfdf2)
|
|
#endif
|
|
|
|
#ifdef L_m16trdfsf2
|
|
STARTFN (__mips16_truncdfsf2)
|
|
MOVE_DF_BYTE0 (t)
|
|
cvt.s.d RET,ARG1
|
|
MOVE_SF_RET (f, $31)
|
|
ENDFN (__mips16_truncdfsf2)
|
|
#endif
|
|
|
|
/* Double-precision comparisons. */
|
|
|
|
/* Define a function NAME that loads two double-precision values,
|
|
performs floating point comparison OPCODE, and returns TRUE or
|
|
FALSE depending on the result. */
|
|
|
|
#define CMPDF(NAME, OPCODE, TRUE, FALSE) \
|
|
STARTFN (NAME); \
|
|
MOVE_DF_BYTE0 (t); \
|
|
MOVE_DF_BYTE8 (t); \
|
|
OPCODE ARG1,ARG2; \
|
|
li $2,TRUE; \
|
|
bc1t 1f; \
|
|
li $2,FALSE; \
|
|
1:; \
|
|
j $31; \
|
|
ENDFN (NAME)
|
|
|
|
/* Like CMPDF, but reverse the comparison operands. */
|
|
|
|
#define REVCMPDF(NAME, OPCODE, TRUE, FALSE) \
|
|
STARTFN (NAME); \
|
|
MOVE_DF_BYTE0 (t); \
|
|
MOVE_DF_BYTE8 (t); \
|
|
OPCODE ARG2,ARG1; \
|
|
li $2,TRUE; \
|
|
bc1t 1f; \
|
|
li $2,FALSE; \
|
|
1:; \
|
|
j $31; \
|
|
ENDFN (NAME)
|
|
|
|
#ifdef L_m16eqdf2
|
|
CMPDF (__mips16_eqdf2, c.eq.d, 0, 1)
|
|
#endif
|
|
#ifdef L_m16nedf2
|
|
CMPDF (__mips16_nedf2, c.eq.d, 0, 1)
|
|
#endif
|
|
#ifdef L_m16gtdf2
|
|
REVCMPDF (__mips16_gtdf2, c.lt.d, 1, 0)
|
|
#endif
|
|
#ifdef L_m16gedf2
|
|
REVCMPDF (__mips16_gedf2, c.le.d, 0, -1)
|
|
#endif
|
|
#ifdef L_m16ledf2
|
|
CMPDF (__mips16_ledf2, c.le.d, 0, 1)
|
|
#endif
|
|
#ifdef L_m16ltdf2
|
|
CMPDF (__mips16_ltdf2, c.lt.d, -1, 0)
|
|
#endif
|
|
#ifdef L_m16unorddf2
|
|
CMPDF(__mips16_unorddf2, c.un.d, 1, 0)
|
|
#endif
|
|
|
|
/* Double-precision conversions. */
|
|
|
|
#ifdef L_m16fltsidf
|
|
STARTFN (__mips16_floatsidf)
|
|
MOVE_SI_BYTE0 (t)
|
|
cvt.d.w RET,ARG1
|
|
MOVE_DF_RET (f, $31)
|
|
ENDFN (__mips16_floatsidf)
|
|
#endif
|
|
|
|
#ifdef L_m16fltunsidf
|
|
STARTFN (__mips16_floatunsidf)
|
|
MOVE_SI_BYTE0 (t)
|
|
cvt.d.w RET,ARG1
|
|
bgez $4,1f
|
|
li.d ARG1, 4.294967296e+9
|
|
add.d RET, RET, ARG1
|
|
1: MOVE_DF_RET (f, $31)
|
|
ENDFN (__mips16_floatunsidf)
|
|
#endif
|
|
|
|
#ifdef L_m16fix_truncdfsi
|
|
STARTFN (__mips16_fix_truncdfsi)
|
|
MOVE_DF_BYTE0 (t)
|
|
trunc.w.d RET,ARG1,$4
|
|
MOVE_SI_RET (f, $31)
|
|
ENDFN (__mips16_fix_truncdfsi)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
/* We don't export stubs from libgcc_s.so and always require static
|
|
versions to be pulled from libgcc.a as needed because they use $2
|
|
and possibly $3 as arguments, diverging from the standard SysV ABI,
|
|
and as such would require severe pessimisation of MIPS16 PLT entries
|
|
just for this single special case.
|
|
|
|
For compatibility with old binaries that used safe standard MIPS PLT
|
|
entries and referred to these functions we still export them at
|
|
version GCC_4.4.0 for run-time loading only. */
|
|
|
|
#ifdef SHARED
|
|
#define CE_STARTFN(NAME) \
|
|
STARTFN (NAME##_compat); \
|
|
.symver NAME##_compat, NAME@GCC_4.4.0
|
|
#define CE_ENDFN(NAME) ENDFN (NAME##_compat)
|
|
#else
|
|
#define CE_STARTFN(NAME) \
|
|
STARTFN (NAME); \
|
|
.hidden NAME
|
|
#define CE_ENDFN(NAME) ENDFN (NAME)
|
|
#endif
|
|
|
|
/* Define a function NAME that moves a return value of mode MODE from
|
|
FPRs to GPRs. */
|
|
|
|
#define RET_FUNCTION(NAME, MODE) \
|
|
CE_STARTFN (NAME); \
|
|
MOVE_##MODE##_RET (t, $31); \
|
|
CE_ENDFN (NAME)
|
|
|
|
#ifdef L_m16retsf
|
|
RET_FUNCTION (__mips16_ret_sf, SF)
|
|
#endif
|
|
|
|
#ifdef L_m16retsc
|
|
RET_FUNCTION (__mips16_ret_sc, SC)
|
|
#endif
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
#ifdef L_m16retdf
|
|
RET_FUNCTION (__mips16_ret_df, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16retdc
|
|
RET_FUNCTION (__mips16_ret_dc, DC)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
/* STUB_ARGS_X copies the arguments from GPRs to FPRs for argument
|
|
code X. X is calculated as ARG1 + ARG2 * 4, where ARG1 and ARG2
|
|
classify the first and second arguments as follows:
|
|
|
|
1: a single-precision argument
|
|
2: a double-precision argument
|
|
0: no argument, or not one of the above. */
|
|
|
|
#define STUB_ARGS_0 /* () */
|
|
#define STUB_ARGS_1 MOVE_SF_BYTE0 (t) /* (sf) */
|
|
#define STUB_ARGS_5 MOVE_SF_BYTE0 (t); MOVE_SF_BYTE4 (t) /* (sf, sf) */
|
|
#define STUB_ARGS_9 MOVE_SF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (sf, df) */
|
|
#define STUB_ARGS_2 MOVE_DF_BYTE0 (t) /* (df) */
|
|
#define STUB_ARGS_6 MOVE_DF_BYTE0 (t); MOVE_SF_BYTE8 (t) /* (df, sf) */
|
|
#define STUB_ARGS_10 MOVE_DF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (df, df) */
|
|
|
|
/* These functions are used by 16-bit code when calling via a function
|
|
pointer. They must copy the floating point arguments from the GPRs
|
|
to FPRs and then call function $2. */
|
|
|
|
#define CALL_STUB_NO_RET(NAME, CODE) \
|
|
CE_STARTFN (NAME); \
|
|
STUB_ARGS_##CODE; \
|
|
.set noreorder; \
|
|
jr $2; \
|
|
move $25,$2; \
|
|
.set reorder; \
|
|
CE_ENDFN (NAME)
|
|
|
|
#ifdef L_m16stub1
|
|
CALL_STUB_NO_RET (__mips16_call_stub_1, 1)
|
|
#endif
|
|
|
|
#ifdef L_m16stub5
|
|
CALL_STUB_NO_RET (__mips16_call_stub_5, 5)
|
|
#endif
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
|
|
#ifdef L_m16stub2
|
|
CALL_STUB_NO_RET (__mips16_call_stub_2, 2)
|
|
#endif
|
|
|
|
#ifdef L_m16stub6
|
|
CALL_STUB_NO_RET (__mips16_call_stub_6, 6)
|
|
#endif
|
|
|
|
#ifdef L_m16stub9
|
|
CALL_STUB_NO_RET (__mips16_call_stub_9, 9)
|
|
#endif
|
|
|
|
#ifdef L_m16stub10
|
|
CALL_STUB_NO_RET (__mips16_call_stub_10, 10)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
/* Now we have the same set of functions, except that this time the
|
|
function being called returns an SFmode, SCmode, DFmode or DCmode
|
|
value; we need to instantiate a set for each case. The calling
|
|
function will arrange to preserve $18, so these functions are free
|
|
to use it to hold the return address.
|
|
|
|
Note that we do not know whether the function we are calling is 16
|
|
bit or 32 bit. However, it does not matter, because 16-bit
|
|
functions always return floating point values in both the gp and
|
|
the fp regs. It would be possible to check whether the function
|
|
being called is 16 bits, in which case the copy is unnecessary;
|
|
however, it's faster to always do the copy. */
|
|
|
|
#define CALL_STUB_RET(NAME, CODE, MODE) \
|
|
CE_STARTFN (NAME); \
|
|
.cfi_startproc; \
|
|
/* Create a fake CFA 4 bytes below the stack pointer. */ \
|
|
.cfi_def_cfa 29,-4; \
|
|
/* "Save" $sp in itself so we don't use the fake CFA. \
|
|
This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */ \
|
|
.cfi_escape 0x16,29,1,0x6d; \
|
|
move $18,$31; \
|
|
.cfi_register 31,18; \
|
|
STUB_ARGS_##CODE; \
|
|
.set noreorder; \
|
|
jalr $2; \
|
|
move $25,$2; \
|
|
.set reorder; \
|
|
MOVE_##MODE##_RET (f, $18); \
|
|
.cfi_endproc; \
|
|
CE_ENDFN (NAME)
|
|
|
|
/* First, instantiate the single-float set. */
|
|
|
|
#ifdef L_m16stubsf0
|
|
CALL_STUB_RET (__mips16_call_stub_sf_0, 0, SF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsf1
|
|
CALL_STUB_RET (__mips16_call_stub_sf_1, 1, SF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsf5
|
|
CALL_STUB_RET (__mips16_call_stub_sf_5, 5, SF)
|
|
#endif
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
#ifdef L_m16stubsf2
|
|
CALL_STUB_RET (__mips16_call_stub_sf_2, 2, SF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsf6
|
|
CALL_STUB_RET (__mips16_call_stub_sf_6, 6, SF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsf9
|
|
CALL_STUB_RET (__mips16_call_stub_sf_9, 9, SF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsf10
|
|
CALL_STUB_RET (__mips16_call_stub_sf_10, 10, SF)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
|
|
/* Now we have the same set of functions again, except that this time
|
|
the function being called returns an DFmode value. */
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
#ifdef L_m16stubdf0
|
|
CALL_STUB_RET (__mips16_call_stub_df_0, 0, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdf1
|
|
CALL_STUB_RET (__mips16_call_stub_df_1, 1, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdf5
|
|
CALL_STUB_RET (__mips16_call_stub_df_5, 5, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdf2
|
|
CALL_STUB_RET (__mips16_call_stub_df_2, 2, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdf6
|
|
CALL_STUB_RET (__mips16_call_stub_df_6, 6, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdf9
|
|
CALL_STUB_RET (__mips16_call_stub_df_9, 9, DF)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdf10
|
|
CALL_STUB_RET (__mips16_call_stub_df_10, 10, DF)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
|
|
/* Ho hum. Here we have the same set of functions again, this time
|
|
for when the function being called returns an SCmode value. */
|
|
|
|
#ifdef L_m16stubsc0
|
|
CALL_STUB_RET (__mips16_call_stub_sc_0, 0, SC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsc1
|
|
CALL_STUB_RET (__mips16_call_stub_sc_1, 1, SC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsc5
|
|
CALL_STUB_RET (__mips16_call_stub_sc_5, 5, SC)
|
|
#endif
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
#ifdef L_m16stubsc2
|
|
CALL_STUB_RET (__mips16_call_stub_sc_2, 2, SC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsc6
|
|
CALL_STUB_RET (__mips16_call_stub_sc_6, 6, SC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsc9
|
|
CALL_STUB_RET (__mips16_call_stub_sc_9, 9, SC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubsc10
|
|
CALL_STUB_RET (__mips16_call_stub_sc_10, 10, SC)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
|
|
/* Finally, another set of functions for DCmode. */
|
|
|
|
#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
|
|
#ifdef L_m16stubdc0
|
|
CALL_STUB_RET (__mips16_call_stub_dc_0, 0, DC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdc1
|
|
CALL_STUB_RET (__mips16_call_stub_dc_1, 1, DC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdc5
|
|
CALL_STUB_RET (__mips16_call_stub_dc_5, 5, DC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdc2
|
|
CALL_STUB_RET (__mips16_call_stub_dc_2, 2, DC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdc6
|
|
CALL_STUB_RET (__mips16_call_stub_dc_6, 6, DC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdc9
|
|
CALL_STUB_RET (__mips16_call_stub_dc_9, 9, DC)
|
|
#endif
|
|
|
|
#ifdef L_m16stubdc10
|
|
CALL_STUB_RET (__mips16_call_stub_dc_10, 10, DC)
|
|
#endif
|
|
#endif /* !__mips_single_float */
|
|
|
|
#endif
|
|
#endif /* defined(__mips_micromips) || defined(__mips_soft_float) */
|