Retro68/gcc/libcilkrts/include/cilk/reducer_list.h
2014-09-21 19:33:12 +02:00

1128 lines
40 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* reducer_list.h -*- C++ -*-
*
* @copyright
* Copyright (C) 2009-2013, Intel Corporation
* All rights reserved.
*
* @copyright
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* @copyright
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @file reducer_list.h
*
* @brief Defines classes for doing parallel list creation by appending or
* prepending.
*
* @ingroup ReducersList
*
* @see ReducersList
*/
#ifndef REDUCER_LIST_H_INCLUDED
#define REDUCER_LIST_H_INCLUDED
#include <cilk/reducer.h>
#include <list>
/** @defgroup ReducersList List Reducers
*
* List append and prepend reducers allow the creation of a standard list by
* concatenating a set of lists or values in parallel.
*
* @ingroup Reducers
*
* You should be familiar with @ref pagereducers "Cilk reducers", described in
* file `reducers.md`, and particularly with @ref reducers_using, before trying
* to use the information in this file.
*
* @section redlist_usage Usage Example
*
* // Create a list containing the labels of the nodes of a tree in
* // “inorder” (left subtree, root, right subtree).
*
* struct Tree { Tree* left; Tree* right; string label; ... };
*
* list<string> x;
* cilk::reducer< cilk::op_list_append<string> > xr(cilk::move_in(x));
* collect_labels(tree, xr);
* xr.move_out(x);
*
* void collect_labels(Tree* node,
* cilk::reducer< cilk::op_list_append<string> >& xr)
* {
* if (node) {
* cilk_spawn collect_labels(node->left, xr);
* xr->push_back(node->label);
* collect_labels(node->right, xr);
* cilk_sync;
* }
* }
*
* @section redlist_monoid The Monoid
*
* @subsection redlist_monoid_values Value Set
*
* The value set of a list reducer is the set of values of the class
* `std::list<Type, Allocator>`, which we refer to as “the reducers list
* type”.
*
* @subsection redlist_monoid_operator Operator
*
* The operator of a list append reducer is defined as
*
* x CAT y == (every element of x, followed by every element of y)
*
* The operator of a list prepend reducer is defined as
*
* x RCAT y == (every element of y, followed by every element of x)
*
* @subsection redlist_monoid_identity Identity
*
* The identity value of a list reducer is the empty list, which is the value
* of the expression `std::list<Type, Allocator>([allocator])`.
*
* @section redlist_operations Operations
*
* In the operation descriptions below, the type name `List` refers to the
* reducers string type, `std::list<Type, Allocator>`.
*
* @subsection redlist_constructors Constructors
*
* Any argument list which is valid for a `std::list` constructor is valid for
* a list reducer constructor. The usual move-in constructor is also provided:
*
* reducer(move_in(List& variable))
*
* A list reducer with no constructor arguments, or with only an allocator
* argument, will initially contain the identity value, an empty list.
*
* @subsection redlist_get_set Set and Get
*
* r.set_value(const List& value)
* const List& = r.get_value() const
* r.move_in(List& variable)
* r.move_out(List& variable)
*
* @subsection redlist_view_ops View Operations
*
* The view of a list append reducer provides the following member functions:
*
* void push_back(const Type& element)
* void insert_back(List::size_type n, const Type& element)
* template <typename Iter> void insert_back(Iter first, Iter last)
* void splice_back(List& x)
* void splice_back(List& x, List::iterator i)
* void splice_back(List& x, List::iterator first, List::iterator last)
*
* The view of a list prepend reducer provides the following member functions:
*
* void push_front(const Type& element)
* void insert_front(List::size_type n, const Type& element)
* template <typename Iter> void insert_front(Iter first, Iter last)
* void splice_front(List& x)
* void splice_front(List& x, List::iterator i)
* void splice_front(List& x, List::iterator first, List::iterator last)
*
* The `push_back` and `push_front` functions are the same as the
* corresponding `std::list` functions. The `insert_back`, `splice_back`,
* `insert_front`, and `splice_front` functions are the same as the
* `std::list` `insert` and `splice` functions, with the first parameter
* fixed to the end or beginning of the list, respectively.
*
* @section redlist_performance Performance Considerations
*
* An efficient reducer requires that combining the values of two views (using
* the view `reduce()` function) be a constant-time operations. Two lists can
* be merged in constant time using the `splice()` function if they have the
* same allocator. Therefore, the lists for new views are created (by the view
* identity constructor) using the same allocator as the list that was created
* when the reducer was constructed.
*
* The performance of adding elements to a list reducer depends on the view
* operations that are used:
*
* * The `push` functions add a single element to the list, and therefore
* take constant time.
* * An `insert` function that inserts _N_ elements adds each of them
* individually, and therefore takes _O(N)_ time.
* * A `splice` function that inserts _N_ elements just adjusts a couple of
* pointers, and therefore takes constant time, _if the splice is from a
* list with the same allocator as the reducer_. Otherwise, it is
* equivalent to an `insert`, and takes _O(N)_ time.
*
* This means that for best performance, if you will be adding elements to a
* list reducer in batches, you should `splice` them from a list having the
* same allocator as the reducer.
*
* The reducer `move_in` and `move_out` functions do a constant-time `swap` if
* the variable has the same allocator as the reducer, and a linear-time copy
* otherwise.
*
* Note that the allocator of a list reducer is determined when the reducer is
* constructed. The following two examples may have very different behavior:
*
* list<Element, Allocator> a_list;
*
* reducer< list_append<Element, Allocator> reducer1(move_in(a_list));
* ... parallel computation ...
* reducer1.move_out(a_list);
*
* reducer< list_append<Element, Allocator> reducer2;
* reducer2.move_in(a_list);
* ... parallel computation ...
* reducer2.move_out(a_list);
*
* * `reducer1` will be constructed with the same allocator as `a_list`,
* because the list was was specified in the constructor. The `move_in`
* and`move_out` can therefore be done with a `swap` in constant time.
* * `reducer2` will be constructed with a _default_ allocator,
* “`Allocator()`”, which may or may not be the same as the allocator of
* `a_list`. Therefore, the `move_in` and `move_out` may have to be done
* with a copy in _O(N)_ time.
*
* (All instances of an allocator type with no internal state (like
* `std::allocator`) are “the same”. You only need to worry about the “same
* allocator” issue when you create list reducers with custom allocator types.)
*
* @section redlist_types Type and Operator Requirements
*
* `std::list<Type, Allocator>` must be a valid type.
*/
namespace cilk {
namespace internal {
/** @ingroup ReducersList */
//@{
/** Base class for list append and prepend view classes.
*
* @note This class provides the definitions that are required for a class
* that will be used as the parameter of a @ref list_monoid_base
* specialization.
*
* @tparam Type The list element type (not the list type).
* @tparam Allocator The list's allocator class.
*
* @see ReducersList
* @see list_monoid_base
*/
template <typename Type, typename Allocator>
class list_view_base
{
protected:
/// The type of the contained list.
typedef std::list<Type, Allocator> list_type;
/// The list accumulator variable.
list_type m_value;
public:
/** @name Monoid support.
*/
//@{
/// Required by @ref monoid_with_view
typedef list_type value_type;
/// Required by @ref list_monoid_base
Allocator get_allocator() const
{
return m_value.get_allocator();
}
//@}
/** @name Constructors.
*/
//@{
/// Standard list constructor.
explicit list_view_base(const Allocator& a = Allocator()) : m_value(a) {}
explicit list_view_base(
typename list_type::size_type n,
const Type& value = Type(),
const Allocator& a = Allocator() ) : m_value(n, value, a) {}
template <typename Iter>
list_view_base(Iter first, Iter last, const Allocator& a = Allocator()) :
m_value(first, last, a) {}
list_view_base(const list_type& list) : m_value(list) {}
/// Move-in constructor.
explicit list_view_base(move_in_wrapper<value_type> w)
: m_value(w.value().get_allocator())
{
m_value.swap(w.value());
}
//@}
/** @name Reducer support.
*/
//@{
/// Required by reducer::move_in()
void view_move_in(value_type& v)
{
if (m_value.get_allocator() == v.get_allocator())
// Equal allocators. Do a (fast) swap.
m_value.swap(v);
else
// Unequal allocators. Do a (slow) copy.
m_value = v;
v.clear();
}
/// Required by reducer::move_out()
void view_move_out(value_type& v)
{
if (m_value.get_allocator() == v.get_allocator())
// Equal allocators. Do a (fast) swap.
m_value.swap(v);
else
// Unequal allocators. Do a (slow) copy.
v = m_value;
m_value.clear();
}
/// Required by reducer::set_value()
void view_set_value(const value_type& v) { m_value = v; }
/// Required by reducer::get_value()
value_type const& view_get_value() const { return m_value; }
// Required by legacy wrapper get_reference()
value_type & view_get_reference() { return m_value; }
value_type const& view_get_reference() const { return m_value; }
//@}
};
/** Base class for list append and prepend monoid classes.
*
* The key to efficient reducers is that the `identity` operation, which
* creates a new per-strand view, and the `reduce` operation, which combines
* two per-strand views, must be constant-time operations. Two lists can be
* concatenated in constant time only if they have the same allocator.
* Therefore, all the per-strand list accumulator variables must be created
* with the same allocator as the leftmost view list.
*
* This means that a list reduction monoid must have a copy of the allocator
* of the leftmost views list, so that it can use it in the `identity`
* operation. This, in turn, requires that list reduction monoids have a
* specialized `construct()` function, which constructs the leftmost view
* before the monoid, and then passes the leftmost views allocator to the
* monoid constructor.
*
* @tparam View The list append or prepend view class.
* @tparam Align If `false` (the default), reducers instantiated on this
* monoid will be naturally aligned (the Cilk library 1.0
* behavior). If `true`, reducers instantiated on this monoid
* will be cache-aligned for binary compatibility with
* reducers in Cilk library version 0.9.
*
* @see ReducersList
* @see list_view_base
*/
template <typename View, bool Align>
class list_monoid_base : public monoid_with_view<View, Align>
{
typedef typename View::value_type list_type;
typedef typename list_type::allocator_type allocator_type;
allocator_type m_allocator;
using monoid_base<list_type, View>::provisional;
public:
/** Constructor.
*
* There is no default constructor for list monoids, because the allocator
* must always be specified.
*
* @param allocator The list allocator to be used when
* identity-constructing new views.
*/
list_monoid_base(const allocator_type& allocator = allocator_type()) :
m_allocator(allocator) {}
/** Create an identity view.
*
* List view identity constructors take the list allocator as an argument.
*
* @param v The address of the uninitialized memory in which the view
* will be constructed.
*/
void identity(View *v) const { ::new((void*) v) View(m_allocator); }
/** @name construct functions
*
* All `construct()` functions first construct the leftmost view, using
* the optional @a x1, @a x2, and @a x3 arguments that were passed in from
* the reducer constructor. They then call the views `get_allocator()`
* function to get the list allocator from its contained list, and pass it
* to the monoid constructor.
*/
//@{
template <typename Monoid>
static void construct(Monoid* monoid, View* view)
{ provisional( new ((void*)view) View() ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
template <typename Monoid, typename T1>
static void construct(Monoid* monoid, View* view, const T1& x1)
{ provisional( new ((void*)view) View(x1) ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
template <typename Monoid, typename T1, typename T2>
static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2)
{ provisional( new ((void*)view) View(x1, x2) ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
template <typename Monoid, typename T1, typename T2, typename T3>
static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2,
const T3& x3)
{ provisional( new ((void*)view) View(x1, x2, x3) ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
//@}
};
//@}
} // namespace internal
/** @ingroup ReducersList */
//@{
/** The list append reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_list_append<Type, Allocator> >`. It holds the
* accumulator variable for the reduction, and allows only append operations
* to be performed on it.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view classs
* `push_back` operation would be used in an expression like
* `r->push_back(a)`, where `r` is a list append reducer variable.
*
* @tparam Type The list element type (not the list type).
* @tparam Allocator The list allocator type.
*
* @see ReducersList
* @see op_list_append
*/
template <class Type,
class Allocator = typename std::list<Type>::allocator_type>
class op_list_append_view : public internal::list_view_base<Type, Allocator>
{
typedef internal::list_view_base<Type, Allocator> base;
typedef std::list<Type, Allocator> list_type;
typedef typename list_type::iterator iterator;
iterator end() { return this->m_value.end(); }
public:
/** @name Constructors.
*
* All op_list_append_view constructors simply pass their arguments on to
* the @ref internal::list_view_base base class constructor.
*
* @ref internal::list_view_base supports all the std::list constructor
* forms, as well as the reducer move_in constructor form.
*/
//@{
op_list_append_view() : base() {}
template <typename T1>
op_list_append_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_list_append_view(const T1& x1, const T2& x2) : base(x1, x2) {}
template <typename T1, typename T2, typename T3>
op_list_append_view(const T1& x1, const T2& x2, const T3& x3) :
base(x1, x2, x3) {}
//@}
/** @name View modifier operations.
*/
//@{
/** Add an element at the end of the list.
*
* This is equivalent to `list.push_back(element)`
*/
void push_back(const Type& element)
{ this->m_value.push_back(element); }
/** Insert elements at the end of the list.
*
* This is equivalent to `list.insert(list.end(), n, element)`
*/
void insert_back(typename list_type::size_type n, const Type& element)
{ this->m_value.insert(end(), n, element); }
/** Insert elements at the end of the list.
*
* This is equivalent to `list.insert(list.end(), first, last)`
*/
template <typename Iter>
void insert_back(Iter first, Iter last)
{ this->m_value.insert(end(), first, last); }
/** Splice elements at the end of the list.
*
* This is equivalent to `list.splice(list.end(), x)`
*/
void splice_back(list_type& x) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(end(), x);
else {
insert_back(x.begin(), x.end());
x.clear();
}
}
/** Splice elements at the end of the list.
*
* This is equivalent to `list.splice(list.end(), x, i)`
*/
void splice_back(list_type& x, iterator i) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(end(), x, i);
else {
push_back(*i);
x.erase(i);
}
}
/** Splice elements at the end of the list.
*
* This is equivalent to `list.splice(list.end(), x, first, last)`
*/
void splice_back(list_type& x, iterator first, iterator last) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(end(), x, first, last);
else {
insert_back(first, last);
x.erase(first, last);
}
}
//@}
/** Reduction operation.
*
* This function is invoked by the @ref op_list_append monoid to combine
* the views of two strands when the right strand merges with the left
* one. It appends the value contained in the right-strand view to the
* value contained in the left-strand view, and leaves the value in the
* right-strand view undefined.
*
* @param right A pointer to the right-strand view. (`this` points to
* the left-strand view.)
*
* @note Used only by the @ref op_list_append monoid to implement the
* monoid reduce operation.
*/
void reduce(op_list_append_view* right)
{
__CILKRTS_ASSERT(
this->m_value.get_allocator() == right->m_value.get_allocator());
this->m_value.splice(end(), right->m_value);
}
};
/** The list prepend reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_list_prepend<Type, Allocator> >`. It holds the
* accumulator variable for the reduction, and allows only prepend operations
* to be performed on it.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view classs
* `push_front` operation would be used in an expression like
* `r->push_front(a)`, where `r` is a list prepend reducer variable.
*
* @tparam Type The list element type (not the list type).
* @tparam Allocator The list allocator type.
*
* @see ReducersList
* @see op_list_prepend
*/
template <class Type,
class Allocator = typename std::list<Type>::allocator_type>
class op_list_prepend_view : public internal::list_view_base<Type, Allocator>
{
typedef internal::list_view_base<Type, Allocator> base;
typedef std::list<Type, Allocator> list_type;
typedef typename list_type::iterator iterator;
iterator begin() { return this->m_value.begin(); }
public:
/** @name Constructors.
*
* All op_list_prepend_view constructors simply pass their arguments on to
* the @ref internal::list_view_base base class constructor.
*
* @ref internal::list_view_base supports all the std::list constructor
* forms, as well as the reducer move_in constructor form.
*
*/
//@{
op_list_prepend_view() : base() {}
template <typename T1>
op_list_prepend_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_list_prepend_view(const T1& x1, const T2& x2) : base(x1, x2) {}
template <typename T1, typename T2, typename T3>
op_list_prepend_view(const T1& x1, const T2& x2, const T3& x3) :
base(x1, x2, x3) {}
//@}
/** @name View modifier operations.
*/
//@{
/** Add an element at the beginning of the list.
*
* This is equivalent to `list.push_front(element)`
*/
void push_front(const Type& element)
{ this->m_value.push_front(element); }
/** Insert elements at the beginning of the list.
*
* This is equivalent to `list.insert(list.begin(), n, element)`
*/
void insert_front(typename list_type::size_type n, const Type& element)
{ this->m_value.insert(begin(), n, element); }
/** Insert elements at the beginning of the list.
*
* This is equivalent to `list.insert(list.begin(), first, last)`
*/
template <typename Iter>
void insert_front(Iter first, Iter last)
{ this->m_value.insert(begin(), first, last); }
/** Splice elements at the beginning of the list.
*
* This is equivalent to `list.splice(list.begin(), x)`
*/
void splice_front(list_type& x) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(begin(), x);
else {
insert_front(x.begin(), x.begin());
x.clear();
}
}
/** Splice elements at the beginning of the list.
*
* This is equivalent to `list.splice(list.begin(), x, i)`
*/
void splice_front(list_type& x, iterator i) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(begin(), x, i);
else {
push_front(*i);
x.erase(i);
}
}
/** Splice elements at the beginning of the list.
*
* This is equivalent to `list.splice(list.begin(), x, first, last)`
*/
void splice_front(list_type& x, iterator first, iterator last) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(begin(), x, first, last);
else {
insert_front(first, last);
x.erase(first, last);
}
}
//@}
/** Reduction operation.
*
* This function is invoked by the @ref op_list_prepend monoid to combine
* the views of two strands when the right strand merges with the left
* one. It prepends the value contained in the right-strand view to the
* value contained in the left-strand view, and leaves the value in the
* right-strand view undefined.
*
* @param right A pointer to the right-strand view. (`this` points to
* the left-strand view.)
*
* @note Used only by the @ref op_list_prepend monoid to implement the
* monoid reduce operation.
*/
/** Reduce operation.
*
* Required by @ref monoid_base.
*/
void reduce(op_list_prepend_view* right)
{
__CILKRTS_ASSERT(
this->m_value.get_allocator() == right->m_value.get_allocator());
this->m_value.splice(begin(), right->m_value);
}
};
/** Monoid class for list append reductions. Instantiate the cilk::reducer
* template class with a op_list_append monoid to create a list append reducer
* class. For example, to create a list of strings:
*
* cilk::reducer< cilk::op_list_append<std::string> > r;
*
* @tparam Type The list element type (not the list type).
* @tparam Alloc The list allocator type.
* @tparam Align If `false` (the default), reducers instantiated on this
* monoid will be naturally aligned (the Cilk library 1.0
* behavior). If `true`, reducers instantiated on this monoid
* will be cache-aligned for binary compatibility with
* reducers in Cilk library version 0.9.
*
* @see ReducersList
* @see op_list_append_view
*/
template <typename Type,
typename Allocator = typename std::list<Type>::allocator_type,
bool Align = false>
struct op_list_append :
public internal::list_monoid_base<op_list_append_view<Type, Allocator>, Align>
{
/// Construct with default allocator.
op_list_append() {}
/// Construct with specified allocator.
op_list_append(const Allocator& alloc) :
internal::list_monoid_base<op_list_append_view<Type, Allocator>, Align>(alloc) {}
};
/** Monoid class for list prepend reductions. Instantiate the cilk::reducer
* template class with a op_list_prepend monoid to create a list prepend
* reducer class. For example, to create a list of strings:
*
* cilk::reducer< cilk::op_list_prepend<std::string> > r;
*
* @tparam Type The list element type (not the list type).
* @tparam Alloc The list allocator type.
* @tparam Align If `false` (the default), reducers instantiated on this
* monoid will be naturally aligned (the Cilk library 1.0
* behavior). If `true`, reducers instantiated on this monoid
* will be cache-aligned for binary compatibility with
* reducers in Cilk library version 0.9.
*
* @see ReducersList
* @see op_list_prepend_view
*/
template <typename Type,
typename Allocator = typename std::list<Type>::allocator_type,
bool Align = false>
struct op_list_prepend :
public internal::list_monoid_base<op_list_prepend_view<Type, Allocator>, Align>
{
/// Construct with default allocator.
op_list_prepend() {}
/// Construct with specified allocator.
op_list_prepend(const Allocator& alloc) :
internal::list_monoid_base<op_list_prepend_view<Type, Allocator>, Align>(alloc) {}
};
/** Deprecated list append reducer wrapper class.
*
* reducer_list_append is the same as
* @ref reducer<@ref op_list_append>, except that reducer_list_append is a
* proxy for the contained view, so that accumulator variable update
* operations can be applied directly to the reducer. For example, an element
* is appended to a `reducer<%op_list_append>` with `r->push_back(a)`, but an
* element can be appended to a `%reducer_list_append` with `r.push_back(a)`.
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_list_append.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_list_append`
* and `reducer<%op_list_append>`. This allows incremental code
* conversion: old code that used `%reducer_list_append` can pass a
* `%reducer_list_append` to a converted function that now expects a
* pointer or reference to a `reducer<%op_list_append>`, and vice
* versa.
*
* @tparam Type The value type of the list.
* @tparam Allocator The allocator type of the list.
*
* @see op_list_append
* @see reducer
* @see ReducersList
*/
template <class Type, class Allocator = std::allocator<Type> >
class reducer_list_append :
public reducer<op_list_append<Type, Allocator, true> >
{
typedef reducer<op_list_append<Type, Allocator, true> > base;
using base::view;
public:
/// The reducers list type.
typedef typename base::value_type list_type;
/// The lists element type.
typedef Type list_value_type;
/// The reducers primitive component type.
typedef Type basic_value_type;
/// The monoid type.
typedef typename base::monoid_type Monoid;
/** @name Constructors
*/
//@{
/** Construct a reducer with an empty list.
*/
reducer_list_append() {}
/** Construct a reducer with a specified initial list value.
*/
reducer_list_append(const std::list<Type, Allocator> &initial_value) :
base(initial_value) {}
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_and_view. */
//@{
/// @copydoc op_list_append_view::push_back(const Type&)
void push_back(const Type& element) { view().push_back(element); }
//@}
/** Allow mutable access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A mutable reference to the list within the current view.
*/
list_type &get_reference() { return view().view_get_reference(); }
/** Allow read-only access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A const reference to the list within the current view.
*/
list_type const &get_reference() const { return view().view_get_reference(); }
/// @name Dereference
//@{
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_list_append<int> > r;
* r->push_back(a); // *r returns the view
* // push_back is a view member function
*
* reducer_list_append<int> w;
* w->push_back(a); // *w returns the wrapper
* // push_back is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_list_append& operator*() { return *this; }
reducer_list_append const& operator*() const { return *this; }
reducer_list_append* operator->() { return this; }
reducer_list_append const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_list_append<Type, Allocator, false> >& ()
{
return *reinterpret_cast<
reducer< op_list_append<Type, Allocator, false> >*
>(this);
}
operator const reducer< op_list_append<Type, Allocator, false> >& () const
{
return *reinterpret_cast<
const reducer< op_list_append<Type, Allocator, false> >*
>(this);
}
//@}
};
/** Deprecated list prepend reducer wrapper class.
*
* reducer_list_prepend is the same as
* @ref reducer<@ref op_list_prepend>, except that reducer_list_prepend is a
* proxy for the contained view, so that accumulator variable update operations
* can be applied directly to the reducer. For example, an element is prepended
* to a `reducer<op_list_prepend>` with `r->push_back(a)`, but an element is
* prepended to a `reducer_list_prepend` with `r.push_back(a)`.
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_list_prepend.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_list_prepend`
* and `reducer<%op_list_prepend>`. This allows incremental code
* conversion: old code that used `%reducer_list_prepend` can pass a
* `%reducer_list_prepend` to a converted function that now expects a
* pointer or reference to a `reducer<%op_list_prepend>`, and vice
* versa.
*
* @tparam Type The value type of the list.
* @tparam Allocator The allocator type of the list.
*
* @see op_list_prepend
* @see reducer
* @see ReducersList
*/
template <class Type, class Allocator = std::allocator<Type> >
class reducer_list_prepend :
public reducer<op_list_prepend<Type, Allocator, true> >
{
typedef reducer<op_list_prepend<Type, Allocator, true> > base;
using base::view;
public:
/** The reducers list type.
*/
typedef typename base::value_type list_type;
/** The lists element type.
*/
typedef Type list_value_type;
/** The reducers primitive component type.
*/
typedef Type basic_value_type;
/** The monoid type.
*/
typedef typename base::monoid_type Monoid;
/** @name Constructors
*/
//@{
/** Construct a reducer with an empty list.
*/
reducer_list_prepend() {}
/** Construct a reducer with a specified initial list value.
*/
reducer_list_prepend(const std::list<Type, Allocator> &initial_value) :
base(initial_value) {}
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_and_view.
*/
//@{
/// @copydoc op_list_prepend_view::push_front(const Type&)
void push_front(const Type& element) { view().push_front(element); }
//@}
/** Allow mutable access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A mutable reference to the list within the current view.
*/
list_type &get_reference() { return view().view_get_reference(); }
/** Allow read-only access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A const reference to the list within the current view.
*/
list_type const &get_reference() const { return view().view_get_reference(); }
/// @name Dereference
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_list_prepend<int> > r;
* r->push_front(a); // *r returns the view
* // push_front is a view member function
*
* reducer_list_prepend<int> w;
* w->push_front(a); // *w returns the wrapper
* // push_front is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_list_prepend& operator*() { return *this; }
reducer_list_prepend const& operator*() const { return *this; }
reducer_list_prepend* operator->() { return this; }
reducer_list_prepend const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_list_prepend<Type, Allocator, false> >& ()
{
return *reinterpret_cast<
reducer< op_list_prepend<Type, Allocator, false> >*
>(this);
}
operator const reducer< op_list_prepend<Type, Allocator, false> >& () const
{
return *reinterpret_cast<
const reducer< op_list_prepend<Type, Allocator, false> >*
>(this);
}
//@}
};
/// @cond internal
/** Metafunction specialization for reducer conversion.
*
* This specialization of the @ref legacy_reducer_downcast template class
* defined in reducer.h causes the `reducer< op_list_append<Type, Allocator> >`
* class to have an `operator reducer_list_append<Type, Allocator>& ()`
* conversion operator that statically downcasts the `reducer<op_list_append>`
* to the corresponding `reducer_list_append` type. (The reverse conversion,
* from `reducer_list_append` to `reducer<op_list_append>`, is just an upcast,
* which is provided for free by the language.)
*/
template <class Type, class Allocator, bool Align>
struct legacy_reducer_downcast<reducer<op_list_append<Type, Allocator, Align> > >
{
typedef reducer_list_append<Type, Allocator> type;
};
/** Metafunction specialization for reducer conversion.
*
* This specialization of the @ref legacy_reducer_downcast template class
* defined in reducer.h causes the
* `reducer< op_list_prepend<Type, Allocator> >` class to have an
* `operator reducer_list_prepend<Type, Allocator>& ()` conversion operator
* that statically downcasts the `reducer<op_list_prepend>` to the
* corresponding `reducer_list_prepend` type. (The reverse conversion, from
* `reducer_list_prepend` to `reducer<op_list_prepend>`, is just an upcast,
* which is provided for free by the language.)
*/
template <class Type, class Allocator, bool Align>
struct legacy_reducer_downcast<reducer<op_list_prepend<Type, Allocator, Align> > >
{
typedef reducer_list_prepend<Type, Allocator> type;
};
/// @endcond
//@}
} // Close namespace cilk
#endif // REDUCER_LIST_H_INCLUDED