mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-12 11:29:30 +00:00
777 lines
22 KiB
Java
777 lines
22 KiB
Java
/* DeflaterHuffman.java --
|
|
Copyright (C) 2001, 2004, 2005 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.util.zip;
|
|
|
|
/**
|
|
* This is the DeflaterHuffman class.
|
|
*
|
|
* This class is <i>not</i> thread safe. This is inherent in the API, due
|
|
* to the split of deflate and setInput.
|
|
*
|
|
* @author Jochen Hoenicke
|
|
* @date Jan 6, 2000
|
|
*/
|
|
class DeflaterHuffman
|
|
{
|
|
private static final int BUFSIZE = 1 << (DeflaterConstants.DEFAULT_MEM_LEVEL + 6);
|
|
private static final int LITERAL_NUM = 286;
|
|
private static final int DIST_NUM = 30;
|
|
private static final int BITLEN_NUM = 19;
|
|
private static final int REP_3_6 = 16;
|
|
private static final int REP_3_10 = 17;
|
|
private static final int REP_11_138 = 18;
|
|
private static final int EOF_SYMBOL = 256;
|
|
private static final int[] BL_ORDER =
|
|
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
|
|
|
|
private static final String bit4Reverse =
|
|
"\000\010\004\014\002\012\006\016\001\011\005\015\003\013\007\017";
|
|
|
|
class Tree {
|
|
short[] freqs;
|
|
short[] codes;
|
|
byte[] length;
|
|
int[] bl_counts;
|
|
int minNumCodes, numCodes;
|
|
int maxLength;
|
|
|
|
Tree(int elems, int minCodes, int maxLength) {
|
|
this.minNumCodes = minCodes;
|
|
this.maxLength = maxLength;
|
|
freqs = new short[elems];
|
|
bl_counts = new int[maxLength];
|
|
}
|
|
|
|
void reset() {
|
|
for (int i = 0; i < freqs.length; i++)
|
|
freqs[i] = 0;
|
|
codes = null;
|
|
length = null;
|
|
}
|
|
|
|
final void writeSymbol(int code)
|
|
{
|
|
if (DeflaterConstants.DEBUGGING)
|
|
{
|
|
freqs[code]--;
|
|
// System.err.print("writeSymbol("+freqs.length+","+code+"): ");
|
|
}
|
|
pending.writeBits(codes[code] & 0xffff, length[code]);
|
|
}
|
|
|
|
final void checkEmpty()
|
|
{
|
|
boolean empty = true;
|
|
for (int i = 0; i < freqs.length; i++)
|
|
if (freqs[i] != 0)
|
|
{
|
|
System.err.println("freqs["+i+"] == "+freqs[i]);
|
|
empty = false;
|
|
}
|
|
if (!empty)
|
|
throw new InternalError();
|
|
System.err.println("checkEmpty suceeded!");
|
|
}
|
|
|
|
void setStaticCodes(short[] stCodes, byte[] stLength)
|
|
{
|
|
codes = stCodes;
|
|
length = stLength;
|
|
}
|
|
|
|
public void buildCodes() {
|
|
int[] nextCode = new int[maxLength];
|
|
int code = 0;
|
|
codes = new short[freqs.length];
|
|
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.println("buildCodes: "+freqs.length);
|
|
for (int bits = 0; bits < maxLength; bits++)
|
|
{
|
|
nextCode[bits] = code;
|
|
code += bl_counts[bits] << (15 - bits);
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.println("bits: "+(bits+1)+" count: "+bl_counts[bits]
|
|
+" nextCode: "+Integer.toHexString(code));
|
|
}
|
|
if (DeflaterConstants.DEBUGGING && code != 65536)
|
|
throw new RuntimeException("Inconsistent bl_counts!");
|
|
|
|
for (int i=0; i < numCodes; i++)
|
|
{
|
|
int bits = length[i];
|
|
if (bits > 0)
|
|
{
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.println("codes["+i+"] = rev("
|
|
+Integer.toHexString(nextCode[bits-1])+"),"
|
|
+bits);
|
|
codes[i] = bitReverse(nextCode[bits-1]);
|
|
nextCode[bits-1] += 1 << (16 - bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
private void buildLength(int childs[])
|
|
{
|
|
this.length = new byte [freqs.length];
|
|
int numNodes = childs.length / 2;
|
|
int numLeafs = (numNodes + 1) / 2;
|
|
int overflow = 0;
|
|
|
|
for (int i = 0; i < maxLength; i++)
|
|
bl_counts[i] = 0;
|
|
|
|
/* First calculate optimal bit lengths */
|
|
int lengths[] = new int[numNodes];
|
|
lengths[numNodes-1] = 0;
|
|
for (int i = numNodes - 1; i >= 0; i--)
|
|
{
|
|
if (childs[2*i+1] != -1)
|
|
{
|
|
int bitLength = lengths[i] + 1;
|
|
if (bitLength > maxLength)
|
|
{
|
|
bitLength = maxLength;
|
|
overflow++;
|
|
}
|
|
lengths[childs[2*i]] = lengths[childs[2*i+1]] = bitLength;
|
|
}
|
|
else
|
|
{
|
|
/* A leaf node */
|
|
int bitLength = lengths[i];
|
|
bl_counts[bitLength - 1]++;
|
|
this.length[childs[2*i]] = (byte) lengths[i];
|
|
}
|
|
}
|
|
|
|
if (DeflaterConstants.DEBUGGING)
|
|
{
|
|
System.err.println("Tree "+freqs.length+" lengths:");
|
|
for (int i=0; i < numLeafs; i++)
|
|
System.err.println("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
|
|
+ " len: "+length[childs[2*i]]);
|
|
}
|
|
|
|
if (overflow == 0)
|
|
return;
|
|
|
|
int incrBitLen = maxLength - 1;
|
|
do
|
|
{
|
|
/* Find the first bit length which could increase: */
|
|
while (bl_counts[--incrBitLen] == 0)
|
|
;
|
|
|
|
/* Move this node one down and remove a corresponding
|
|
* amount of overflow nodes.
|
|
*/
|
|
do
|
|
{
|
|
bl_counts[incrBitLen]--;
|
|
bl_counts[++incrBitLen]++;
|
|
overflow -= 1 << (maxLength - 1 - incrBitLen);
|
|
}
|
|
while (overflow > 0 && incrBitLen < maxLength - 1);
|
|
}
|
|
while (overflow > 0);
|
|
|
|
/* We may have overshot above. Move some nodes from maxLength to
|
|
* maxLength-1 in that case.
|
|
*/
|
|
bl_counts[maxLength-1] += overflow;
|
|
bl_counts[maxLength-2] -= overflow;
|
|
|
|
/* Now recompute all bit lengths, scanning in increasing
|
|
* frequency. It is simpler to reconstruct all lengths instead of
|
|
* fixing only the wrong ones. This idea is taken from 'ar'
|
|
* written by Haruhiko Okumura.
|
|
*
|
|
* The nodes were inserted with decreasing frequency into the childs
|
|
* array.
|
|
*/
|
|
int nodePtr = 2 * numLeafs;
|
|
for (int bits = maxLength; bits != 0; bits--)
|
|
{
|
|
int n = bl_counts[bits-1];
|
|
while (n > 0)
|
|
{
|
|
int childPtr = 2*childs[nodePtr++];
|
|
if (childs[childPtr + 1] == -1)
|
|
{
|
|
/* We found another leaf */
|
|
length[childs[childPtr]] = (byte) bits;
|
|
n--;
|
|
}
|
|
}
|
|
}
|
|
if (DeflaterConstants.DEBUGGING)
|
|
{
|
|
System.err.println("*** After overflow elimination. ***");
|
|
for (int i=0; i < numLeafs; i++)
|
|
System.err.println("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
|
|
+ " len: "+length[childs[2*i]]);
|
|
}
|
|
}
|
|
|
|
void buildTree()
|
|
{
|
|
int numSymbols = freqs.length;
|
|
|
|
/* heap is a priority queue, sorted by frequency, least frequent
|
|
* nodes first. The heap is a binary tree, with the property, that
|
|
* the parent node is smaller than both child nodes. This assures
|
|
* that the smallest node is the first parent.
|
|
*
|
|
* The binary tree is encoded in an array: 0 is root node and
|
|
* the nodes 2*n+1, 2*n+2 are the child nodes of node n.
|
|
*/
|
|
int[] heap = new int[numSymbols];
|
|
int heapLen = 0;
|
|
int maxCode = 0;
|
|
for (int n = 0; n < numSymbols; n++)
|
|
{
|
|
int freq = freqs[n];
|
|
if (freq != 0)
|
|
{
|
|
/* Insert n into heap */
|
|
int pos = heapLen++;
|
|
int ppos;
|
|
while (pos > 0 &&
|
|
freqs[heap[ppos = (pos - 1) / 2]] > freq) {
|
|
heap[pos] = heap[ppos];
|
|
pos = ppos;
|
|
}
|
|
heap[pos] = n;
|
|
maxCode = n;
|
|
}
|
|
}
|
|
|
|
/* We could encode a single literal with 0 bits but then we
|
|
* don't see the literals. Therefore we force at least two
|
|
* literals to avoid this case. We don't care about order in
|
|
* this case, both literals get a 1 bit code.
|
|
*/
|
|
while (heapLen < 2)
|
|
{
|
|
int node = maxCode < 2 ? ++maxCode : 0;
|
|
heap[heapLen++] = node;
|
|
}
|
|
|
|
numCodes = Math.max(maxCode + 1, minNumCodes);
|
|
|
|
int numLeafs = heapLen;
|
|
int[] childs = new int[4*heapLen - 2];
|
|
int[] values = new int[2*heapLen - 1];
|
|
int numNodes = numLeafs;
|
|
for (int i = 0; i < heapLen; i++)
|
|
{
|
|
int node = heap[i];
|
|
childs[2*i] = node;
|
|
childs[2*i+1] = -1;
|
|
values[i] = freqs[node] << 8;
|
|
heap[i] = i;
|
|
}
|
|
|
|
/* Construct the Huffman tree by repeatedly combining the least two
|
|
* frequent nodes.
|
|
*/
|
|
do
|
|
{
|
|
int first = heap[0];
|
|
int last = heap[--heapLen];
|
|
|
|
/* Propagate the hole to the leafs of the heap */
|
|
int ppos = 0;
|
|
int path = 1;
|
|
while (path < heapLen)
|
|
{
|
|
if (path + 1 < heapLen
|
|
&& values[heap[path]] > values[heap[path+1]])
|
|
path++;
|
|
|
|
heap[ppos] = heap[path];
|
|
ppos = path;
|
|
path = path * 2 + 1;
|
|
}
|
|
|
|
/* Now propagate the last element down along path. Normally
|
|
* it shouldn't go too deep.
|
|
*/
|
|
int lastVal = values[last];
|
|
while ((path = ppos) > 0
|
|
&& values[heap[ppos = (path - 1)/2]] > lastVal)
|
|
heap[path] = heap[ppos];
|
|
heap[path] = last;
|
|
|
|
|
|
int second = heap[0];
|
|
|
|
/* Create a new node father of first and second */
|
|
last = numNodes++;
|
|
childs[2*last] = first;
|
|
childs[2*last+1] = second;
|
|
int mindepth = Math.min(values[first] & 0xff, values[second] & 0xff);
|
|
values[last] = lastVal = values[first] + values[second] - mindepth + 1;
|
|
|
|
/* Again, propagate the hole to the leafs */
|
|
ppos = 0;
|
|
path = 1;
|
|
while (path < heapLen)
|
|
{
|
|
if (path + 1 < heapLen
|
|
&& values[heap[path]] > values[heap[path+1]])
|
|
path++;
|
|
|
|
heap[ppos] = heap[path];
|
|
ppos = path;
|
|
path = ppos * 2 + 1;
|
|
}
|
|
|
|
/* Now propagate the new element down along path */
|
|
while ((path = ppos) > 0
|
|
&& values[heap[ppos = (path - 1)/2]] > lastVal)
|
|
heap[path] = heap[ppos];
|
|
heap[path] = last;
|
|
}
|
|
while (heapLen > 1);
|
|
|
|
if (heap[0] != childs.length / 2 - 1)
|
|
throw new RuntimeException("Weird!");
|
|
|
|
buildLength(childs);
|
|
}
|
|
|
|
int getEncodedLength()
|
|
{
|
|
int len = 0;
|
|
for (int i = 0; i < freqs.length; i++)
|
|
len += freqs[i] * length[i];
|
|
return len;
|
|
}
|
|
|
|
void calcBLFreq(Tree blTree) {
|
|
int max_count; /* max repeat count */
|
|
int min_count; /* min repeat count */
|
|
int count; /* repeat count of the current code */
|
|
int curlen = -1; /* length of current code */
|
|
|
|
int i = 0;
|
|
while (i < numCodes)
|
|
{
|
|
count = 1;
|
|
int nextlen = length[i];
|
|
if (nextlen == 0)
|
|
{
|
|
max_count = 138;
|
|
min_count = 3;
|
|
}
|
|
else
|
|
{
|
|
max_count = 6;
|
|
min_count = 3;
|
|
if (curlen != nextlen)
|
|
{
|
|
blTree.freqs[nextlen]++;
|
|
count = 0;
|
|
}
|
|
}
|
|
curlen = nextlen;
|
|
i++;
|
|
|
|
while (i < numCodes && curlen == length[i])
|
|
{
|
|
i++;
|
|
if (++count >= max_count)
|
|
break;
|
|
}
|
|
|
|
if (count < min_count)
|
|
blTree.freqs[curlen] += count;
|
|
else if (curlen != 0)
|
|
blTree.freqs[REP_3_6]++;
|
|
else if (count <= 10)
|
|
blTree.freqs[REP_3_10]++;
|
|
else
|
|
blTree.freqs[REP_11_138]++;
|
|
}
|
|
}
|
|
|
|
void writeTree(Tree blTree)
|
|
{
|
|
int max_count; /* max repeat count */
|
|
int min_count; /* min repeat count */
|
|
int count; /* repeat count of the current code */
|
|
int curlen = -1; /* length of current code */
|
|
|
|
int i = 0;
|
|
while (i < numCodes)
|
|
{
|
|
count = 1;
|
|
int nextlen = length[i];
|
|
if (nextlen == 0)
|
|
{
|
|
max_count = 138;
|
|
min_count = 3;
|
|
}
|
|
else
|
|
{
|
|
max_count = 6;
|
|
min_count = 3;
|
|
if (curlen != nextlen)
|
|
{
|
|
blTree.writeSymbol(nextlen);
|
|
count = 0;
|
|
}
|
|
}
|
|
curlen = nextlen;
|
|
i++;
|
|
|
|
while (i < numCodes && curlen == length[i])
|
|
{
|
|
i++;
|
|
if (++count >= max_count)
|
|
break;
|
|
}
|
|
|
|
if (count < min_count)
|
|
{
|
|
while (count-- > 0)
|
|
blTree.writeSymbol(curlen);
|
|
}
|
|
else if (curlen != 0)
|
|
{
|
|
blTree.writeSymbol(REP_3_6);
|
|
pending.writeBits(count - 3, 2);
|
|
}
|
|
else if (count <= 10)
|
|
{
|
|
blTree.writeSymbol(REP_3_10);
|
|
pending.writeBits(count - 3, 3);
|
|
}
|
|
else
|
|
{
|
|
blTree.writeSymbol(REP_11_138);
|
|
pending.writeBits(count - 11, 7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
DeflaterPending pending;
|
|
private Tree literalTree, distTree, blTree;
|
|
|
|
private short d_buf[];
|
|
private byte l_buf[];
|
|
private int last_lit;
|
|
private int extra_bits;
|
|
|
|
private static short staticLCodes[];
|
|
private static byte staticLLength[];
|
|
private static short staticDCodes[];
|
|
private static byte staticDLength[];
|
|
|
|
/**
|
|
* Reverse the bits of a 16 bit value.
|
|
*/
|
|
static short bitReverse(int value) {
|
|
return (short) (bit4Reverse.charAt(value & 0xf) << 12
|
|
| bit4Reverse.charAt((value >> 4) & 0xf) << 8
|
|
| bit4Reverse.charAt((value >> 8) & 0xf) << 4
|
|
| bit4Reverse.charAt(value >> 12));
|
|
}
|
|
|
|
static {
|
|
/* See RFC 1951 3.2.6 */
|
|
/* Literal codes */
|
|
staticLCodes = new short[LITERAL_NUM];
|
|
staticLLength = new byte[LITERAL_NUM];
|
|
int i = 0;
|
|
while (i < 144) {
|
|
staticLCodes[i] = bitReverse((0x030 + i) << 8);
|
|
staticLLength[i++] = 8;
|
|
}
|
|
while (i < 256) {
|
|
staticLCodes[i] = bitReverse((0x190 - 144 + i) << 7);
|
|
staticLLength[i++] = 9;
|
|
}
|
|
while (i < 280) {
|
|
staticLCodes[i] = bitReverse((0x000 - 256 + i) << 9);
|
|
staticLLength[i++] = 7;
|
|
}
|
|
while (i < LITERAL_NUM) {
|
|
staticLCodes[i] = bitReverse((0x0c0 - 280 + i) << 8);
|
|
staticLLength[i++] = 8;
|
|
}
|
|
|
|
/* Distant codes */
|
|
staticDCodes = new short[DIST_NUM];
|
|
staticDLength = new byte[DIST_NUM];
|
|
for (i = 0; i < DIST_NUM; i++) {
|
|
staticDCodes[i] = bitReverse(i << 11);
|
|
staticDLength[i] = 5;
|
|
}
|
|
}
|
|
|
|
public DeflaterHuffman(DeflaterPending pending)
|
|
{
|
|
this.pending = pending;
|
|
|
|
literalTree = new Tree(LITERAL_NUM, 257, 15);
|
|
distTree = new Tree(DIST_NUM, 1, 15);
|
|
blTree = new Tree(BITLEN_NUM, 4, 7);
|
|
|
|
d_buf = new short[BUFSIZE];
|
|
l_buf = new byte [BUFSIZE];
|
|
}
|
|
|
|
public final void reset() {
|
|
last_lit = 0;
|
|
extra_bits = 0;
|
|
literalTree.reset();
|
|
distTree.reset();
|
|
blTree.reset();
|
|
}
|
|
|
|
private int l_code(int len) {
|
|
if (len == 255)
|
|
return 285;
|
|
|
|
int code = 257;
|
|
while (len >= 8)
|
|
{
|
|
code += 4;
|
|
len >>= 1;
|
|
}
|
|
return code + len;
|
|
}
|
|
|
|
private int d_code(int distance) {
|
|
int code = 0;
|
|
while (distance >= 4)
|
|
{
|
|
code += 2;
|
|
distance >>= 1;
|
|
}
|
|
return code + distance;
|
|
}
|
|
|
|
public void sendAllTrees(int blTreeCodes) {
|
|
blTree.buildCodes();
|
|
literalTree.buildCodes();
|
|
distTree.buildCodes();
|
|
pending.writeBits(literalTree.numCodes - 257, 5);
|
|
pending.writeBits(distTree.numCodes - 1, 5);
|
|
pending.writeBits(blTreeCodes - 4, 4);
|
|
for (int rank = 0; rank < blTreeCodes; rank++)
|
|
pending.writeBits(blTree.length[BL_ORDER[rank]], 3);
|
|
literalTree.writeTree(blTree);
|
|
distTree.writeTree(blTree);
|
|
if (DeflaterConstants.DEBUGGING)
|
|
blTree.checkEmpty();
|
|
}
|
|
|
|
public void compressBlock() {
|
|
for (int i = 0; i < last_lit; i++)
|
|
{
|
|
int litlen = l_buf[i] & 0xff;
|
|
int dist = d_buf[i];
|
|
if (dist-- != 0)
|
|
{
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.print("["+(dist+1)+","+(litlen+3)+"]: ");
|
|
|
|
int lc = l_code(litlen);
|
|
literalTree.writeSymbol(lc);
|
|
|
|
int bits = (lc - 261) / 4;
|
|
if (bits > 0 && bits <= 5)
|
|
pending.writeBits(litlen & ((1 << bits) - 1), bits);
|
|
|
|
int dc = d_code(dist);
|
|
distTree.writeSymbol(dc);
|
|
|
|
bits = dc / 2 - 1;
|
|
if (bits > 0)
|
|
pending.writeBits(dist & ((1 << bits) - 1), bits);
|
|
}
|
|
else
|
|
{
|
|
if (DeflaterConstants.DEBUGGING)
|
|
{
|
|
if (litlen > 32 && litlen < 127)
|
|
System.err.print("("+(char)litlen+"): ");
|
|
else
|
|
System.err.print("{"+litlen+"}: ");
|
|
}
|
|
literalTree.writeSymbol(litlen);
|
|
}
|
|
}
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.print("EOF: ");
|
|
literalTree.writeSymbol(EOF_SYMBOL);
|
|
if (DeflaterConstants.DEBUGGING)
|
|
{
|
|
literalTree.checkEmpty();
|
|
distTree.checkEmpty();
|
|
}
|
|
}
|
|
|
|
public void flushStoredBlock(byte[] stored,
|
|
int stored_offset, int stored_len,
|
|
boolean lastBlock) {
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.println("Flushing stored block "+ stored_len);
|
|
pending.writeBits((DeflaterConstants.STORED_BLOCK << 1)
|
|
+ (lastBlock ? 1 : 0), 3);
|
|
pending.alignToByte();
|
|
pending.writeShort(stored_len);
|
|
pending.writeShort(~stored_len);
|
|
pending.writeBlock(stored, stored_offset, stored_len);
|
|
reset();
|
|
}
|
|
|
|
public void flushBlock(byte[] stored, int stored_offset, int stored_len,
|
|
boolean lastBlock) {
|
|
literalTree.freqs[EOF_SYMBOL]++;
|
|
|
|
/* Build trees */
|
|
literalTree.buildTree();
|
|
distTree.buildTree();
|
|
|
|
/* Calculate bitlen frequency */
|
|
literalTree.calcBLFreq(blTree);
|
|
distTree.calcBLFreq(blTree);
|
|
|
|
/* Build bitlen tree */
|
|
blTree.buildTree();
|
|
|
|
int blTreeCodes = 4;
|
|
for (int i = 18; i > blTreeCodes; i--)
|
|
{
|
|
if (blTree.length[BL_ORDER[i]] > 0)
|
|
blTreeCodes = i+1;
|
|
}
|
|
int opt_len = 14 + blTreeCodes * 3 + blTree.getEncodedLength()
|
|
+ literalTree.getEncodedLength() + distTree.getEncodedLength()
|
|
+ extra_bits;
|
|
|
|
int static_len = extra_bits;
|
|
for (int i = 0; i < LITERAL_NUM; i++)
|
|
static_len += literalTree.freqs[i] * staticLLength[i];
|
|
for (int i = 0; i < DIST_NUM; i++)
|
|
static_len += distTree.freqs[i] * staticDLength[i];
|
|
if (opt_len >= static_len)
|
|
{
|
|
/* Force static trees */
|
|
opt_len = static_len;
|
|
}
|
|
|
|
if (stored_offset >= 0 && stored_len+4 < opt_len >> 3)
|
|
{
|
|
/* Store Block */
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.println("Storing, since " + stored_len + " < " + opt_len
|
|
+ " <= " + static_len);
|
|
flushStoredBlock(stored, stored_offset, stored_len, lastBlock);
|
|
}
|
|
else if (opt_len == static_len)
|
|
{
|
|
/* Encode with static tree */
|
|
pending.writeBits((DeflaterConstants.STATIC_TREES << 1)
|
|
+ (lastBlock ? 1 : 0), 3);
|
|
literalTree.setStaticCodes(staticLCodes, staticLLength);
|
|
distTree.setStaticCodes(staticDCodes, staticDLength);
|
|
compressBlock();
|
|
reset();
|
|
}
|
|
else
|
|
{
|
|
/* Encode with dynamic tree */
|
|
pending.writeBits((DeflaterConstants.DYN_TREES << 1)
|
|
+ (lastBlock ? 1 : 0), 3);
|
|
sendAllTrees(blTreeCodes);
|
|
compressBlock();
|
|
reset();
|
|
}
|
|
}
|
|
|
|
public final boolean isFull()
|
|
{
|
|
return last_lit == BUFSIZE;
|
|
}
|
|
|
|
public final boolean tallyLit(int lit)
|
|
{
|
|
if (DeflaterConstants.DEBUGGING)
|
|
{
|
|
if (lit > 32 && lit < 127)
|
|
System.err.println("("+(char)lit+")");
|
|
else
|
|
System.err.println("{"+lit+"}");
|
|
}
|
|
d_buf[last_lit] = 0;
|
|
l_buf[last_lit++] = (byte) lit;
|
|
literalTree.freqs[lit]++;
|
|
return last_lit == BUFSIZE;
|
|
}
|
|
|
|
public final boolean tallyDist(int dist, int len)
|
|
{
|
|
if (DeflaterConstants.DEBUGGING)
|
|
System.err.println("["+dist+","+len+"]");
|
|
|
|
d_buf[last_lit] = (short) dist;
|
|
l_buf[last_lit++] = (byte) (len - 3);
|
|
|
|
int lc = l_code(len-3);
|
|
literalTree.freqs[lc]++;
|
|
if (lc >= 265 && lc < 285)
|
|
extra_bits += (lc - 261) / 4;
|
|
|
|
int dc = d_code(dist-1);
|
|
distTree.freqs[dc]++;
|
|
if (dc >= 4)
|
|
extra_bits += dc / 2 - 1;
|
|
return last_lit == BUFSIZE;
|
|
}
|
|
}
|