mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-12 11:29:30 +00:00
98 lines
2.6 KiB
Go
98 lines
2.6 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
// The original C code, the long comment, and the constants
|
|
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
|
|
// available from http://www.netlib.org/cephes/cmath.tgz.
|
|
// The go code is a simplified version of the original C.
|
|
// tanh.c
|
|
//
|
|
// Hyperbolic tangent
|
|
//
|
|
// SYNOPSIS:
|
|
//
|
|
// double x, y, tanh();
|
|
//
|
|
// y = tanh( x );
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.
|
|
// MAXLOG = 8.8029691931113054295988e+01 = log(2**127)
|
|
// MINLOG = -8.872283911167299960540e+01 = log(2**-128)
|
|
//
|
|
// A rational function is used for |x| < 0.625. The form
|
|
// x + x**3 P(x)/Q(x) of Cody & Waite is employed.
|
|
// Otherwise,
|
|
// tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// IEEE -2,2 30000 2.5e-16 5.8e-17
|
|
//
|
|
// Cephes Math Library Release 2.8: June, 2000
|
|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
//
|
|
// The readme file at http://netlib.sandia.gov/cephes/ says:
|
|
// Some software in this archive may be from the book _Methods and
|
|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
|
// International, 1989) or from the Cephes Mathematical Library, a
|
|
// commercial product. In either event, it is copyrighted by the author.
|
|
// What you see here may be used freely but it comes with no support or
|
|
// guarantee.
|
|
//
|
|
// The two known misprints in the book are repaired here in the
|
|
// source listings for the gamma function and the incomplete beta
|
|
// integral.
|
|
//
|
|
// Stephen L. Moshier
|
|
// moshier@na-net.ornl.gov
|
|
//
|
|
|
|
var tanhP = [...]float64{
|
|
-9.64399179425052238628E-1,
|
|
-9.92877231001918586564E1,
|
|
-1.61468768441708447952E3,
|
|
}
|
|
var tanhQ = [...]float64{
|
|
1.12811678491632931402E2,
|
|
2.23548839060100448583E3,
|
|
4.84406305325125486048E3,
|
|
}
|
|
|
|
// Tanh returns the hyperbolic tangent of x.
|
|
//
|
|
// Special cases are:
|
|
// Tanh(±0) = ±0
|
|
// Tanh(±Inf) = ±1
|
|
// Tanh(NaN) = NaN
|
|
func Tanh(x float64) float64 {
|
|
const MAXLOG = 8.8029691931113054295988e+01 // log(2**127)
|
|
z := Abs(x)
|
|
switch {
|
|
case z > 0.5*MAXLOG:
|
|
if x < 0 {
|
|
return -1
|
|
}
|
|
return 1
|
|
case z >= 0.625:
|
|
s := Exp(2 * z)
|
|
z = 1 - 2/(s+1)
|
|
if x < 0 {
|
|
z = -z
|
|
}
|
|
default:
|
|
if x == 0 {
|
|
return x
|
|
}
|
|
s := x * x
|
|
z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2])
|
|
}
|
|
return z
|
|
}
|