mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-27 14:50:23 +00:00
88 lines
1.9 KiB
Go
88 lines
1.9 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
// The original C code and the the comment below are from
|
|
// FreeBSD's /usr/src/lib/msun/src/e_remainder.c and came
|
|
// with this notice. The go code is a simplified version of
|
|
// the original C.
|
|
//
|
|
// ====================================================
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
//
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
// Permission to use, copy, modify, and distribute this
|
|
// software is freely granted, provided that this notice
|
|
// is preserved.
|
|
// ====================================================
|
|
//
|
|
// __ieee754_remainder(x,y)
|
|
// Return :
|
|
// returns x REM y = x - [x/y]*y as if in infinite
|
|
// precision arithmetic, where [x/y] is the (infinite bit)
|
|
// integer nearest x/y (in half way cases, choose the even one).
|
|
// Method :
|
|
// Based on Mod() returning x - [x/y]chopped * y exactly.
|
|
|
|
// Remainder returns the IEEE 754 floating-point remainder of x/y.
|
|
//
|
|
// Special cases are:
|
|
// Remainder(±Inf, y) = NaN
|
|
// Remainder(NaN, y) = NaN
|
|
// Remainder(x, 0) = NaN
|
|
// Remainder(x, ±Inf) = x
|
|
// Remainder(x, NaN) = NaN
|
|
func Remainder(x, y float64) float64 {
|
|
return remainder(x, y)
|
|
}
|
|
|
|
func remainder(x, y float64) float64 {
|
|
const (
|
|
Tiny = 4.45014771701440276618e-308 // 0x0020000000000000
|
|
HalfMax = MaxFloat64 / 2
|
|
)
|
|
// special cases
|
|
switch {
|
|
case IsNaN(x) || IsNaN(y) || IsInf(x, 0) || y == 0:
|
|
return NaN()
|
|
case IsInf(y, 0):
|
|
return x
|
|
}
|
|
sign := false
|
|
if x < 0 {
|
|
x = -x
|
|
sign = true
|
|
}
|
|
if y < 0 {
|
|
y = -y
|
|
}
|
|
if x == y {
|
|
return 0
|
|
}
|
|
if y <= HalfMax {
|
|
x = Mod(x, y+y) // now x < 2y
|
|
}
|
|
if y < Tiny {
|
|
if x+x > y {
|
|
x -= y
|
|
if x+x >= y {
|
|
x -= y
|
|
}
|
|
}
|
|
} else {
|
|
yHalf := 0.5 * y
|
|
if x > yHalf {
|
|
x -= y
|
|
if x >= yHalf {
|
|
x -= y
|
|
}
|
|
}
|
|
}
|
|
if sign {
|
|
x = -x
|
|
}
|
|
return x
|
|
}
|