Retro68/gcc/libgo/runtime/malloc.h
2017-04-10 13:32:00 +02:00

661 lines
23 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory allocator, based on tcmalloc.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 100 size classes, each of which
// has its own free list of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using free list
// allocators.
//
// The allocator's data structures are:
//
// FixAlloc: a free-list allocator for fixed-size objects,
// used to manage storage used by the allocator.
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
// MSpan: a run of pages managed by the MHeap.
// MCentral: a shared free list for a given size class.
// MCache: a per-thread (in Go, per-P) cache for small objects.
// MStats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
// 1. Round the size up to one of the small size classes
// and look in the corresponding MCache free list.
// If the list is not empty, allocate an object from it.
// This can all be done without acquiring a lock.
//
// 2. If the MCache free list is empty, replenish it by
// taking a bunch of objects from the MCentral free list.
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
//
// 3. If the MCentral free list is empty, replenish it by
// allocating a run of pages from the MHeap and then
// chopping that memory into a objects of the given size.
// Allocating many objects amortizes the cost of locking
// the heap.
//
// 4. If the MHeap is empty or has no page runs large enough,
// allocate a new group of pages (at least 1MB) from the
// operating system. Allocating a large run of pages
// amortizes the cost of talking to the operating system.
//
// Freeing a small object proceeds up the same hierarchy:
//
// 1. Look up the size class for the object and add it to
// the MCache free list.
//
// 2. If the MCache free list is too long or the MCache has
// too much memory, return some to the MCentral free lists.
//
// 3. If all the objects in a given span have returned to
// the MCentral list, return that span to the page heap.
//
// 4. If the heap has too much memory, return some to the
// operating system.
//
// TODO(rsc): Step 4 is not implemented.
//
// Allocating and freeing a large object uses the page heap
// directly, bypassing the MCache and MCentral free lists.
//
// The small objects on the MCache and MCentral free lists
// may or may not be zeroed. They are zeroed if and only if
// the second word of the object is zero. A span in the
// page heap is zeroed unless s->needzero is set. When a span
// is allocated to break into small objects, it is zeroed if needed
// and s->needzero is set. There are two main benefits to delaying the
// zeroing this way:
//
// 1. stack frames allocated from the small object lists
// or the page heap can avoid zeroing altogether.
// 2. the cost of zeroing when reusing a small object is
// charged to the mutator, not the garbage collector.
//
// This C code was written with an eye toward translating to Go
// in the future. Methods have the form Type_Method(Type *t, ...).
typedef struct MCentral MCentral;
typedef struct MHeap MHeap;
typedef struct MSpan MSpan;
typedef struct MStats MStats;
typedef struct MLink MLink;
typedef struct MTypes MTypes;
typedef struct GCStats GCStats;
enum
{
PageShift = 13,
PageSize = 1<<PageShift,
PageMask = PageSize - 1,
};
typedef uintptr PageID; // address >> PageShift
enum
{
// Computed constant. The definition of MaxSmallSize and the
// algorithm in msize.c produce some number of different allocation
// size classes. NumSizeClasses is that number. It's needed here
// because there are static arrays of this length; when msize runs its
// size choosing algorithm it double-checks that NumSizeClasses agrees.
NumSizeClasses = 67,
// Tunable constants.
MaxSmallSize = 32<<10,
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
TinySize = 16,
TinySizeClass = 2,
FixAllocChunk = 16<<10, // Chunk size for FixAlloc
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
HeapAllocChunk = 1<<20, // Chunk size for heap growth
// Number of bits in page to span calculations (4k pages).
// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
#if __SIZEOF_POINTER__ == 8
#ifdef GOOS_windows
// Windows counts memory used by page table into committed memory
// of the process, so we can't reserve too much memory.
// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
MHeapMap_Bits = 35 - PageShift,
#else
MHeapMap_Bits = 37 - PageShift,
#endif
#else
MHeapMap_Bits = 32 - PageShift,
#endif
// Max number of threads to run garbage collection.
// 2, 3, and 4 are all plausible maximums depending
// on the hardware details of the machine. The garbage
// collector scales well to 8 cpus.
MaxGcproc = 8,
};
// Maximum memory allocation size, a hint for callers.
// This must be a #define instead of an enum because it
// is so large.
#if __SIZEOF_POINTER__ == 8
#define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
#else
#define MaxMem ((uintptr)-1)
#endif
// A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
struct MLink
{
MLink *next;
};
// SysAlloc obtains a large chunk of zeroed memory from the
// operating system, typically on the order of a hundred kilobytes
// or a megabyte.
// NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by SysAlloc.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes.
// SysUsed notifies the operating system that the contents
// of the memory region are needed again.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation. It is okay if SysFree is a no-op.
//
// SysReserve reserves address space without allocating memory.
// If the pointer passed to it is non-nil, the caller wants the
// reservation there, but SysReserve can still choose another
// location if that one is unavailable. On some systems and in some
// cases SysReserve will simply check that the address space is
// available and not actually reserve it. If SysReserve returns
// non-nil, it sets *reserved to true if the address space is
// reserved, false if it has merely been checked.
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by SysAlloc.
//
// SysMap maps previously reserved address space for use.
// The reserved argument is true if the address space was really
// reserved, not merely checked.
//
// SysFault marks a (already SysAlloc'd) region to fault
// if accessed. Used only for debugging the runtime.
void* runtime_SysAlloc(uintptr nbytes, uint64 *stat);
void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
void runtime_SysUnused(void *v, uintptr nbytes);
void runtime_SysUsed(void *v, uintptr nbytes);
void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
void runtime_SysFault(void *v, uintptr nbytes);
// FixAlloc is a simple free-list allocator for fixed size objects.
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
// MCache and MSpan objects.
//
// Memory returned by FixAlloc_Alloc is not zeroed.
// The caller is responsible for locking around FixAlloc calls.
// Callers can keep state in the object but the first word is
// smashed by freeing and reallocating.
struct FixAlloc
{
uintptr size;
void (*first)(void *arg, byte *p); // called first time p is returned
void* arg;
MLink* list;
byte* chunk;
uint32 nchunk;
uintptr inuse; // in-use bytes now
uint64* stat;
};
void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
void* runtime_FixAlloc_Alloc(FixAlloc *f);
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
// Statistics.
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
struct MStats
{
// General statistics.
uint64 alloc; // bytes allocated and still in use
uint64 total_alloc; // bytes allocated (even if freed)
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
uint64 nlookup; // number of pointer lookups
uint64 nmalloc; // number of mallocs
uint64 nfree; // number of frees
// Statistics about malloc heap.
// protected by mheap.Lock
uint64 heap_alloc; // bytes allocated and still in use
uint64 heap_sys; // bytes obtained from system
uint64 heap_idle; // bytes in idle spans
uint64 heap_inuse; // bytes in non-idle spans
uint64 heap_released; // bytes released to the OS
uint64 heap_objects; // total number of allocated objects
// Statistics about allocation of low-level fixed-size structures.
// Protected by FixAlloc locks.
uint64 stacks_inuse; // bootstrap stacks
uint64 stacks_sys;
uint64 mspan_inuse; // MSpan structures
uint64 mspan_sys;
uint64 mcache_inuse; // MCache structures
uint64 mcache_sys;
uint64 buckhash_sys; // profiling bucket hash table
uint64 gc_sys;
uint64 other_sys;
// Statistics about garbage collector.
// Protected by mheap or stopping the world during GC.
uint64 next_gc; // next GC (in heap_alloc time)
uint64 last_gc; // last GC (in absolute time)
uint64 pause_total_ns;
uint64 pause_ns[256];
uint64 pause_end[256];
uint32 numgc;
float64 gc_cpu_fraction;
bool enablegc;
bool debuggc;
// Statistics about allocation size classes.
struct {
uint32 size;
uint64 nmalloc;
uint64 nfree;
} by_size[NumSizeClasses];
};
extern MStats mstats
__asm__ (GOSYM_PREFIX "runtime.memStats");
void runtime_updatememstats(GCStats *stats);
// Size classes. Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
// making new objects in class i
int32 runtime_SizeToClass(int32);
uintptr runtime_roundupsize(uintptr);
extern int32 runtime_class_to_size[NumSizeClasses];
extern int32 runtime_class_to_allocnpages[NumSizeClasses];
extern int8 runtime_size_to_class8[1024/8 + 1];
extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
extern void runtime_InitSizes(void);
typedef struct MCacheList MCacheList;
struct MCacheList
{
MLink *list;
uint32 nlist;
};
// Per-thread (in Go, per-P) cache for small objects.
// No locking needed because it is per-thread (per-P).
struct MCache
{
// The following members are accessed on every malloc,
// so they are grouped here for better caching.
int32 next_sample; // trigger heap sample after allocating this many bytes
intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
// Allocator cache for tiny objects w/o pointers.
// See "Tiny allocator" comment in malloc.goc.
byte* tiny;
uintptr tinysize;
// The rest is not accessed on every malloc.
MSpan* alloc[NumSizeClasses]; // spans to allocate from
MCacheList free[NumSizeClasses];// lists of explicitly freed objects
// Local allocator stats, flushed during GC.
uintptr local_nlookup; // number of pointer lookups
uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize)
uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize)
uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
};
MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
void runtime_MCache_ReleaseAll(MCache *c);
// MTypes describes the types of blocks allocated within a span.
// The compression field describes the layout of the data.
//
// MTypes_Empty:
// All blocks are free, or no type information is available for
// allocated blocks.
// The data field has no meaning.
// MTypes_Single:
// The span contains just one block.
// The data field holds the type information.
// The sysalloc field has no meaning.
// MTypes_Words:
// The span contains multiple blocks.
// The data field points to an array of type [NumBlocks]uintptr,
// and each element of the array holds the type of the corresponding
// block.
// MTypes_Bytes:
// The span contains at most seven different types of blocks.
// The data field points to the following structure:
// struct {
// type [8]uintptr // type[0] is always 0
// index [NumBlocks]byte
// }
// The type of the i-th block is: data.type[data.index[i]]
enum
{
MTypes_Empty = 0,
MTypes_Single = 1,
MTypes_Words = 2,
MTypes_Bytes = 3,
};
struct MTypes
{
byte compression; // one of MTypes_*
uintptr data;
};
enum
{
KindSpecialFinalizer = 1,
KindSpecialProfile = 2,
// Note: The finalizer special must be first because if we're freeing
// an object, a finalizer special will cause the freeing operation
// to abort, and we want to keep the other special records around
// if that happens.
};
typedef struct Special Special;
struct Special
{
Special* next; // linked list in span
uint16 offset; // span offset of object
byte kind; // kind of Special
};
// The described object has a finalizer set for it.
typedef struct SpecialFinalizer SpecialFinalizer;
struct SpecialFinalizer
{
Special;
FuncVal* fn;
const FuncType* ft;
const PtrType* ot;
};
// The described object is being heap profiled.
typedef struct Bucket Bucket; // from mprof.goc
typedef struct SpecialProfile SpecialProfile;
struct SpecialProfile
{
Special;
Bucket* b;
};
// An MSpan is a run of pages.
enum
{
MSpanInUse = 0,
MSpanFree,
MSpanListHead,
MSpanDead,
};
struct MSpan
{
MSpan *next; // in a span linked list
MSpan *prev; // in a span linked list
PageID start; // starting page number
uintptr npages; // number of pages in span
MLink *freelist; // list of free objects
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// h->sweepgen is incremented by 2 after every GC
uint32 sweepgen;
uint16 ref; // capacity - number of objects in freelist
uint8 sizeclass; // size class
bool incache; // being used by an MCache
uint8 state; // MSpanInUse etc
uint8 needzero; // needs to be zeroed before allocation
uintptr elemsize; // computed from sizeclass or from npages
int64 unusedsince; // First time spotted by GC in MSpanFree state
uintptr npreleased; // number of pages released to the OS
byte *limit; // end of data in span
MTypes types; // types of allocated objects in this span
Lock specialLock; // guards specials list
Special *specials; // linked list of special records sorted by offset.
MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet
};
void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
void runtime_MSpan_EnsureSwept(MSpan *span);
bool runtime_MSpan_Sweep(MSpan *span);
// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists. We use empty MSpan structures as list heads.
void runtime_MSpanList_Init(MSpan *list);
bool runtime_MSpanList_IsEmpty(MSpan *list);
void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
// Central list of free objects of a given size.
struct MCentral
{
Lock;
int32 sizeclass;
MSpan nonempty; // list of spans with a free object
MSpan empty; // list of spans with no free objects (or cached in an MCache)
int32 nfree; // # of objects available in nonempty spans
};
void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
MSpan* runtime_MCentral_CacheSpan(MCentral *c);
void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
struct MHeap
{
Lock;
MSpan free[MaxMHeapList]; // free lists of given length
MSpan freelarge; // free lists length >= MaxMHeapList
MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
MSpan **allspans; // all spans out there
MSpan **sweepspans; // copy of allspans referenced by sweeper
uint32 nspan;
uint32 nspancap;
uint32 sweepgen; // sweep generation, see comment in MSpan
uint32 sweepdone; // all spans are swept
// span lookup
MSpan** spans;
uintptr spans_mapped;
// range of addresses we might see in the heap
byte *bitmap;
uintptr bitmap_mapped;
byte *arena_start;
byte *arena_used;
byte *arena_end;
bool arena_reserved;
// central free lists for small size classes.
// the padding makes sure that the MCentrals are
// spaced CacheLineSize bytes apart, so that each MCentral.Lock
// gets its own cache line.
struct {
MCentral;
byte pad[64];
} central[NumSizeClasses];
FixAlloc spanalloc; // allocator for Span*
FixAlloc cachealloc; // allocator for MCache*
FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
FixAlloc specialprofilealloc; // allocator for SpecialProfile*
Lock speciallock; // lock for sepcial record allocators.
// Malloc stats.
uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
};
extern MHeap runtime_mheap;
void runtime_MHeap_Init(MHeap *h);
MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
void runtime_MHeap_MapBits(MHeap *h);
void runtime_MHeap_MapSpans(MHeap *h);
void runtime_MHeap_Scavenger(void*);
void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
void runtime_gc(int32 force);
uintptr runtime_sweepone(void);
void runtime_markscan(void *v);
void runtime_marknogc(void *v);
void runtime_checkallocated(void *v, uintptr n);
void runtime_markfreed(void *v);
void runtime_checkfreed(void *v, uintptr n);
extern int32 runtime_checking;
void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
void runtime_unmarkspan(void *v, uintptr size);
void runtime_purgecachedstats(MCache*);
void* runtime_cnew(const Type*);
void* runtime_cnewarray(const Type*, intgo);
void runtime_tracealloc(void*, uintptr, uintptr);
void runtime_tracefree(void*, uintptr);
void runtime_tracegc(void);
uintptr runtime_gettype(void*);
enum
{
// flags to malloc
FlagNoScan = 1<<0, // GC doesn't have to scan object
FlagNoProfiling = 1<<1, // must not profile
FlagNoGC = 1<<2, // must not free or scan for pointers
FlagNoZero = 1<<3, // don't zero memory
FlagNoInvokeGC = 1<<4, // don't invoke GC
};
typedef struct Obj Obj;
struct Obj
{
byte *p; // data pointer
uintptr n; // size of data in bytes
uintptr ti; // type info
};
void runtime_MProf_Malloc(void*, uintptr);
void runtime_MProf_Free(Bucket*, uintptr, bool);
void runtime_MProf_GC(void);
void runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr));
int32 runtime_gcprocs(void);
void runtime_helpgc(int32 nproc);
void runtime_gchelper(void);
void runtime_createfing(void);
G* runtime_wakefing(void);
extern bool runtime_fingwait;
extern bool runtime_fingwake;
void runtime_setprofilebucket(void *p, Bucket *b);
struct __go_func_type;
struct __go_ptr_type;
bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
void runtime_removefinalizer(void*);
void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
enum
{
TypeInfo_SingleObject = 0,
TypeInfo_Array = 1,
TypeInfo_Chan = 2,
// Enables type information at the end of blocks allocated from heap
DebugTypeAtBlockEnd = 0,
};
// Information from the compiler about the layout of stack frames.
typedef struct BitVector BitVector;
struct BitVector
{
int32 n; // # of bits
uint32 *data;
};
typedef struct StackMap StackMap;
struct StackMap
{
int32 n; // number of bitmaps
int32 nbit; // number of bits in each bitmap
uint32 data[];
};
enum {
// Pointer map
BitsPerPointer = 2,
BitsDead = 0,
BitsScalar = 1,
BitsPointer = 2,
BitsMultiWord = 3,
// BitsMultiWord will be set for the first word of a multi-word item.
// When it is set, one of the following will be set for the second word.
BitsString = 0,
BitsSlice = 1,
BitsIface = 2,
BitsEface = 3,
};
// Returns pointer map data for the given stackmap index
// (the index is encoded in PCDATA_StackMapIndex).
BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
// defined in mgc0.go
void runtime_gc_m_ptr(Eface*);
void runtime_gc_g_ptr(Eface*);
void runtime_gc_itab_ptr(Eface*);
void runtime_memorydump(void);
int32 runtime_setgcpercent(int32);
// Value we use to mark dead pointers when GODEBUG=gcdead=1.
#define PoisonGC ((uintptr)0xf969696969696969ULL)
#define PoisonStack ((uintptr)0x6868686868686868ULL)
struct Workbuf;
void runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));