mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 23:32:06 +00:00
951 lines
25 KiB
C
951 lines
25 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Page heap.
|
|
//
|
|
// See malloc.h for overview.
|
|
//
|
|
// When a MSpan is in the heap free list, state == MSpanFree
|
|
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
|
|
//
|
|
// When a MSpan is allocated, state == MSpanInUse
|
|
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
|
|
|
|
#include "runtime.h"
|
|
#include "arch.h"
|
|
#include "malloc.h"
|
|
|
|
static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
|
|
static bool MHeap_Grow(MHeap*, uintptr);
|
|
static void MHeap_FreeLocked(MHeap*, MSpan*);
|
|
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
|
|
static MSpan *BestFit(MSpan*, uintptr, MSpan*);
|
|
|
|
static void
|
|
RecordSpan(void *vh, byte *p)
|
|
{
|
|
MHeap *h;
|
|
MSpan *s;
|
|
MSpan **all;
|
|
uint32 cap;
|
|
|
|
h = vh;
|
|
s = (MSpan*)p;
|
|
if(h->nspan >= h->nspancap) {
|
|
cap = 64*1024/sizeof(all[0]);
|
|
if(cap < h->nspancap*3/2)
|
|
cap = h->nspancap*3/2;
|
|
all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
|
|
if(all == nil)
|
|
runtime_throw("runtime: cannot allocate memory");
|
|
if(h->allspans) {
|
|
runtime_memmove(all, h->allspans, h->nspancap*sizeof(all[0]));
|
|
// Don't free the old array if it's referenced by sweep.
|
|
// See the comment in mgc0.c.
|
|
if(h->allspans != runtime_mheap.sweepspans)
|
|
runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
|
|
}
|
|
h->allspans = all;
|
|
h->nspancap = cap;
|
|
}
|
|
h->allspans[h->nspan++] = s;
|
|
}
|
|
|
|
// Initialize the heap; fetch memory using alloc.
|
|
void
|
|
runtime_MHeap_Init(MHeap *h)
|
|
{
|
|
uint32 i;
|
|
|
|
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
|
|
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
|
|
runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys);
|
|
runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys);
|
|
// h->mapcache needs no init
|
|
for(i=0; i<nelem(h->free); i++) {
|
|
runtime_MSpanList_Init(&h->free[i]);
|
|
runtime_MSpanList_Init(&h->busy[i]);
|
|
}
|
|
runtime_MSpanList_Init(&h->freelarge);
|
|
runtime_MSpanList_Init(&h->busylarge);
|
|
for(i=0; i<nelem(h->central); i++)
|
|
runtime_MCentral_Init(&h->central[i], i);
|
|
}
|
|
|
|
void
|
|
runtime_MHeap_MapSpans(MHeap *h)
|
|
{
|
|
uintptr pagesize;
|
|
uintptr n;
|
|
|
|
// Map spans array, PageSize at a time.
|
|
n = (uintptr)h->arena_used;
|
|
n -= (uintptr)h->arena_start;
|
|
n = n / PageSize * sizeof(h->spans[0]);
|
|
n = ROUND(n, PageSize);
|
|
pagesize = getpagesize();
|
|
n = ROUND(n, pagesize);
|
|
if(h->spans_mapped >= n)
|
|
return;
|
|
runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys);
|
|
h->spans_mapped = n;
|
|
}
|
|
|
|
// Sweeps spans in list until reclaims at least npages into heap.
|
|
// Returns the actual number of pages reclaimed.
|
|
static uintptr
|
|
MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages)
|
|
{
|
|
MSpan *s;
|
|
uintptr n;
|
|
uint32 sg;
|
|
|
|
n = 0;
|
|
sg = runtime_mheap.sweepgen;
|
|
retry:
|
|
for(s = list->next; s != list; s = s->next) {
|
|
if(s->sweepgen == sg-2 && runtime_cas(&s->sweepgen, sg-2, sg-1)) {
|
|
runtime_MSpanList_Remove(s);
|
|
// swept spans are at the end of the list
|
|
runtime_MSpanList_InsertBack(list, s);
|
|
runtime_unlock(h);
|
|
n += runtime_MSpan_Sweep(s);
|
|
runtime_lock(h);
|
|
if(n >= npages)
|
|
return n;
|
|
// the span could have been moved elsewhere
|
|
goto retry;
|
|
}
|
|
if(s->sweepgen == sg-1) {
|
|
// the span is being sweept by background sweeper, skip
|
|
continue;
|
|
}
|
|
// already swept empty span,
|
|
// all subsequent ones must also be either swept or in process of sweeping
|
|
break;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// Sweeps and reclaims at least npage pages into heap.
|
|
// Called before allocating npage pages.
|
|
static void
|
|
MHeap_Reclaim(MHeap *h, uintptr npage)
|
|
{
|
|
uintptr reclaimed, n;
|
|
|
|
// First try to sweep busy spans with large objects of size >= npage,
|
|
// this has good chances of reclaiming the necessary space.
|
|
for(n=npage; n < nelem(h->busy); n++) {
|
|
if(MHeap_ReclaimList(h, &h->busy[n], npage))
|
|
return; // Bingo!
|
|
}
|
|
|
|
// Then -- even larger objects.
|
|
if(MHeap_ReclaimList(h, &h->busylarge, npage))
|
|
return; // Bingo!
|
|
|
|
// Now try smaller objects.
|
|
// One such object is not enough, so we need to reclaim several of them.
|
|
reclaimed = 0;
|
|
for(n=0; n < npage && n < nelem(h->busy); n++) {
|
|
reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed);
|
|
if(reclaimed >= npage)
|
|
return;
|
|
}
|
|
|
|
// Now sweep everything that is not yet swept.
|
|
runtime_unlock(h);
|
|
for(;;) {
|
|
n = runtime_sweepone();
|
|
if(n == (uintptr)-1) // all spans are swept
|
|
break;
|
|
reclaimed += n;
|
|
if(reclaimed >= npage)
|
|
break;
|
|
}
|
|
runtime_lock(h);
|
|
}
|
|
|
|
// Allocate a new span of npage pages from the heap
|
|
// and record its size class in the HeapMap and HeapMapCache.
|
|
MSpan*
|
|
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero)
|
|
{
|
|
MSpan *s;
|
|
|
|
runtime_lock(h);
|
|
mstats.heap_alloc += runtime_m()->mcache->local_cachealloc;
|
|
runtime_m()->mcache->local_cachealloc = 0;
|
|
s = MHeap_AllocLocked(h, npage, sizeclass);
|
|
if(s != nil) {
|
|
mstats.heap_inuse += npage<<PageShift;
|
|
if(large) {
|
|
mstats.heap_objects++;
|
|
mstats.heap_alloc += npage<<PageShift;
|
|
// Swept spans are at the end of lists.
|
|
if(s->npages < nelem(h->free))
|
|
runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
|
|
else
|
|
runtime_MSpanList_InsertBack(&h->busylarge, s);
|
|
}
|
|
}
|
|
runtime_unlock(h);
|
|
if(s != nil) {
|
|
if(needzero && s->needzero)
|
|
runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
|
|
s->needzero = 0;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static MSpan*
|
|
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
|
|
{
|
|
uintptr n;
|
|
MSpan *s, *t;
|
|
PageID p;
|
|
|
|
// To prevent excessive heap growth, before allocating n pages
|
|
// we need to sweep and reclaim at least n pages.
|
|
if(!h->sweepdone)
|
|
MHeap_Reclaim(h, npage);
|
|
|
|
// Try in fixed-size lists up to max.
|
|
for(n=npage; n < nelem(h->free); n++) {
|
|
if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
|
|
s = h->free[n].next;
|
|
goto HaveSpan;
|
|
}
|
|
}
|
|
|
|
// Best fit in list of large spans.
|
|
if((s = MHeap_AllocLarge(h, npage)) == nil) {
|
|
if(!MHeap_Grow(h, npage))
|
|
return nil;
|
|
if((s = MHeap_AllocLarge(h, npage)) == nil)
|
|
return nil;
|
|
}
|
|
|
|
HaveSpan:
|
|
// Mark span in use.
|
|
if(s->state != MSpanFree)
|
|
runtime_throw("MHeap_AllocLocked - MSpan not free");
|
|
if(s->npages < npage)
|
|
runtime_throw("MHeap_AllocLocked - bad npages");
|
|
runtime_MSpanList_Remove(s);
|
|
runtime_atomicstore(&s->sweepgen, h->sweepgen);
|
|
s->state = MSpanInUse;
|
|
mstats.heap_idle -= s->npages<<PageShift;
|
|
mstats.heap_released -= s->npreleased<<PageShift;
|
|
if(s->npreleased > 0)
|
|
runtime_SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
|
|
s->npreleased = 0;
|
|
|
|
if(s->npages > npage) {
|
|
// Trim extra and put it back in the heap.
|
|
t = runtime_FixAlloc_Alloc(&h->spanalloc);
|
|
runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
|
|
s->npages = npage;
|
|
p = t->start;
|
|
p -= ((uintptr)h->arena_start>>PageShift);
|
|
if(p > 0)
|
|
h->spans[p-1] = s;
|
|
h->spans[p] = t;
|
|
h->spans[p+t->npages-1] = t;
|
|
t->needzero = s->needzero;
|
|
runtime_atomicstore(&t->sweepgen, h->sweepgen);
|
|
t->state = MSpanInUse;
|
|
MHeap_FreeLocked(h, t);
|
|
t->unusedsince = s->unusedsince; // preserve age
|
|
}
|
|
s->unusedsince = 0;
|
|
|
|
// Record span info, because gc needs to be
|
|
// able to map interior pointer to containing span.
|
|
s->sizeclass = sizeclass;
|
|
s->elemsize = (sizeclass==0 ? s->npages<<PageShift : (uintptr)runtime_class_to_size[sizeclass]);
|
|
s->types.compression = MTypes_Empty;
|
|
p = s->start;
|
|
p -= ((uintptr)h->arena_start>>PageShift);
|
|
for(n=0; n<npage; n++)
|
|
h->spans[p+n] = s;
|
|
return s;
|
|
}
|
|
|
|
// Allocate a span of exactly npage pages from the list of large spans.
|
|
static MSpan*
|
|
MHeap_AllocLarge(MHeap *h, uintptr npage)
|
|
{
|
|
return BestFit(&h->freelarge, npage, nil);
|
|
}
|
|
|
|
// Search list for smallest span with >= npage pages.
|
|
// If there are multiple smallest spans, take the one
|
|
// with the earliest starting address.
|
|
static MSpan*
|
|
BestFit(MSpan *list, uintptr npage, MSpan *best)
|
|
{
|
|
MSpan *s;
|
|
|
|
for(s=list->next; s != list; s=s->next) {
|
|
if(s->npages < npage)
|
|
continue;
|
|
if(best == nil
|
|
|| s->npages < best->npages
|
|
|| (s->npages == best->npages && s->start < best->start))
|
|
best = s;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
// Try to add at least npage pages of memory to the heap,
|
|
// returning whether it worked.
|
|
static bool
|
|
MHeap_Grow(MHeap *h, uintptr npage)
|
|
{
|
|
uintptr ask;
|
|
void *v;
|
|
MSpan *s;
|
|
PageID p;
|
|
|
|
// Ask for a big chunk, to reduce the number of mappings
|
|
// the operating system needs to track; also amortizes
|
|
// the overhead of an operating system mapping.
|
|
// Allocate a multiple of 64kB (16 pages).
|
|
npage = (npage+15)&~15;
|
|
ask = npage<<PageShift;
|
|
if(ask < HeapAllocChunk)
|
|
ask = HeapAllocChunk;
|
|
|
|
v = runtime_MHeap_SysAlloc(h, ask);
|
|
if(v == nil) {
|
|
if(ask > (npage<<PageShift)) {
|
|
ask = npage<<PageShift;
|
|
v = runtime_MHeap_SysAlloc(h, ask);
|
|
}
|
|
if(v == nil) {
|
|
runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Create a fake "in use" span and free it, so that the
|
|
// right coalescing happens.
|
|
s = runtime_FixAlloc_Alloc(&h->spanalloc);
|
|
runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
|
|
p = s->start;
|
|
p -= ((uintptr)h->arena_start>>PageShift);
|
|
h->spans[p] = s;
|
|
h->spans[p + s->npages - 1] = s;
|
|
runtime_atomicstore(&s->sweepgen, h->sweepgen);
|
|
s->state = MSpanInUse;
|
|
MHeap_FreeLocked(h, s);
|
|
return true;
|
|
}
|
|
|
|
// Look up the span at the given address.
|
|
// Address is guaranteed to be in map
|
|
// and is guaranteed to be start or end of span.
|
|
MSpan*
|
|
runtime_MHeap_Lookup(MHeap *h, void *v)
|
|
{
|
|
uintptr p;
|
|
|
|
p = (uintptr)v;
|
|
p -= (uintptr)h->arena_start;
|
|
return h->spans[p >> PageShift];
|
|
}
|
|
|
|
// Look up the span at the given address.
|
|
// Address is *not* guaranteed to be in map
|
|
// and may be anywhere in the span.
|
|
// Map entries for the middle of a span are only
|
|
// valid for allocated spans. Free spans may have
|
|
// other garbage in their middles, so we have to
|
|
// check for that.
|
|
MSpan*
|
|
runtime_MHeap_LookupMaybe(MHeap *h, void *v)
|
|
{
|
|
MSpan *s;
|
|
PageID p, q;
|
|
|
|
if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
|
|
return nil;
|
|
p = (uintptr)v>>PageShift;
|
|
q = p;
|
|
q -= (uintptr)h->arena_start >> PageShift;
|
|
s = h->spans[q];
|
|
if(s == nil || p < s->start || (byte*)v >= s->limit || s->state != MSpanInUse)
|
|
return nil;
|
|
return s;
|
|
}
|
|
|
|
// Free the span back into the heap.
|
|
void
|
|
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
|
|
{
|
|
runtime_lock(h);
|
|
mstats.heap_alloc += runtime_m()->mcache->local_cachealloc;
|
|
runtime_m()->mcache->local_cachealloc = 0;
|
|
mstats.heap_inuse -= s->npages<<PageShift;
|
|
if(acct) {
|
|
mstats.heap_alloc -= s->npages<<PageShift;
|
|
mstats.heap_objects--;
|
|
}
|
|
MHeap_FreeLocked(h, s);
|
|
runtime_unlock(h);
|
|
}
|
|
|
|
static void
|
|
MHeap_FreeLocked(MHeap *h, MSpan *s)
|
|
{
|
|
MSpan *t;
|
|
PageID p;
|
|
|
|
s->types.compression = MTypes_Empty;
|
|
|
|
if(s->state != MSpanInUse || s->ref != 0 || s->sweepgen != h->sweepgen) {
|
|
runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d sweepgen %d/%d\n",
|
|
s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen);
|
|
runtime_throw("MHeap_FreeLocked - invalid free");
|
|
}
|
|
mstats.heap_idle += s->npages<<PageShift;
|
|
s->state = MSpanFree;
|
|
runtime_MSpanList_Remove(s);
|
|
// Stamp newly unused spans. The scavenger will use that
|
|
// info to potentially give back some pages to the OS.
|
|
s->unusedsince = runtime_nanotime();
|
|
s->npreleased = 0;
|
|
|
|
// Coalesce with earlier, later spans.
|
|
p = s->start;
|
|
p -= (uintptr)h->arena_start >> PageShift;
|
|
if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) {
|
|
s->start = t->start;
|
|
s->npages += t->npages;
|
|
s->npreleased = t->npreleased; // absorb released pages
|
|
s->needzero |= t->needzero;
|
|
p -= t->npages;
|
|
h->spans[p] = s;
|
|
runtime_MSpanList_Remove(t);
|
|
t->state = MSpanDead;
|
|
runtime_FixAlloc_Free(&h->spanalloc, t);
|
|
}
|
|
if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) {
|
|
s->npages += t->npages;
|
|
s->npreleased += t->npreleased;
|
|
s->needzero |= t->needzero;
|
|
h->spans[p + s->npages - 1] = s;
|
|
runtime_MSpanList_Remove(t);
|
|
t->state = MSpanDead;
|
|
runtime_FixAlloc_Free(&h->spanalloc, t);
|
|
}
|
|
|
|
// Insert s into appropriate list.
|
|
if(s->npages < nelem(h->free))
|
|
runtime_MSpanList_Insert(&h->free[s->npages], s);
|
|
else
|
|
runtime_MSpanList_Insert(&h->freelarge, s);
|
|
}
|
|
|
|
static void
|
|
forcegchelper(void *vnote)
|
|
{
|
|
Note *note = (Note*)vnote;
|
|
|
|
runtime_gc(1);
|
|
runtime_notewakeup(note);
|
|
}
|
|
|
|
static uintptr
|
|
scavengelist(MSpan *list, uint64 now, uint64 limit)
|
|
{
|
|
uintptr released, sumreleased, start, end, pagesize;
|
|
MSpan *s;
|
|
|
|
if(runtime_MSpanList_IsEmpty(list))
|
|
return 0;
|
|
|
|
sumreleased = 0;
|
|
for(s=list->next; s != list; s=s->next) {
|
|
if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
|
|
released = (s->npages - s->npreleased) << PageShift;
|
|
mstats.heap_released += released;
|
|
sumreleased += released;
|
|
s->npreleased = s->npages;
|
|
|
|
start = s->start << PageShift;
|
|
end = start + (s->npages << PageShift);
|
|
|
|
// Round start up and end down to ensure we
|
|
// are acting on entire pages.
|
|
pagesize = getpagesize();
|
|
start = ROUND(start, pagesize);
|
|
end &= ~(pagesize - 1);
|
|
if(end > start)
|
|
runtime_SysUnused((void*)start, end - start);
|
|
}
|
|
}
|
|
return sumreleased;
|
|
}
|
|
|
|
static void
|
|
scavenge(int32 k, uint64 now, uint64 limit)
|
|
{
|
|
uint32 i;
|
|
uintptr sumreleased;
|
|
MHeap *h;
|
|
|
|
h = &runtime_mheap;
|
|
sumreleased = 0;
|
|
for(i=0; i < nelem(h->free); i++)
|
|
sumreleased += scavengelist(&h->free[i], now, limit);
|
|
sumreleased += scavengelist(&h->freelarge, now, limit);
|
|
|
|
if(runtime_debug.gctrace > 0) {
|
|
if(sumreleased > 0)
|
|
runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
|
|
runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
|
|
k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
|
|
mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
|
|
}
|
|
}
|
|
|
|
// Release (part of) unused memory to OS.
|
|
// Goroutine created at startup.
|
|
// Loop forever.
|
|
void
|
|
runtime_MHeap_Scavenger(void* dummy)
|
|
{
|
|
G *g;
|
|
MHeap *h;
|
|
uint64 tick, now, forcegc, limit;
|
|
int64 unixnow;
|
|
uint32 k;
|
|
Note note, *notep;
|
|
|
|
USED(dummy);
|
|
|
|
g = runtime_g();
|
|
g->issystem = true;
|
|
g->isbackground = true;
|
|
|
|
// If we go two minutes without a garbage collection, force one to run.
|
|
forcegc = 2*60*1e9;
|
|
// If a span goes unused for 5 minutes after a garbage collection,
|
|
// we hand it back to the operating system.
|
|
limit = 5*60*1e9;
|
|
// Make wake-up period small enough for the sampling to be correct.
|
|
if(forcegc < limit)
|
|
tick = forcegc/2;
|
|
else
|
|
tick = limit/2;
|
|
|
|
h = &runtime_mheap;
|
|
for(k=0;; k++) {
|
|
runtime_noteclear(¬e);
|
|
runtime_notetsleepg(¬e, tick);
|
|
|
|
runtime_lock(h);
|
|
unixnow = runtime_unixnanotime();
|
|
if(unixnow - mstats.last_gc > forcegc) {
|
|
runtime_unlock(h);
|
|
// The scavenger can not block other goroutines,
|
|
// otherwise deadlock detector can fire spuriously.
|
|
// GC blocks other goroutines via the runtime_worldsema.
|
|
runtime_noteclear(¬e);
|
|
notep = ¬e;
|
|
__go_go(forcegchelper, (void*)notep);
|
|
runtime_notetsleepg(¬e, -1);
|
|
if(runtime_debug.gctrace > 0)
|
|
runtime_printf("scvg%d: GC forced\n", k);
|
|
runtime_lock(h);
|
|
}
|
|
now = runtime_nanotime();
|
|
scavenge(k, now, limit);
|
|
runtime_unlock(h);
|
|
}
|
|
}
|
|
|
|
void runtime_debug_freeOSMemory(void) __asm__("runtime_debug.freeOSMemory");
|
|
|
|
void
|
|
runtime_debug_freeOSMemory(void)
|
|
{
|
|
runtime_gc(2); // force GC and do eager sweep
|
|
runtime_lock(&runtime_mheap);
|
|
scavenge(-1, ~(uintptr)0, 0);
|
|
runtime_unlock(&runtime_mheap);
|
|
}
|
|
|
|
// Initialize a new span with the given start and npages.
|
|
void
|
|
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
|
|
{
|
|
span->next = nil;
|
|
span->prev = nil;
|
|
span->start = start;
|
|
span->npages = npages;
|
|
span->freelist = nil;
|
|
span->ref = 0;
|
|
span->sizeclass = 0;
|
|
span->incache = false;
|
|
span->elemsize = 0;
|
|
span->state = MSpanDead;
|
|
span->unusedsince = 0;
|
|
span->npreleased = 0;
|
|
span->types.compression = MTypes_Empty;
|
|
span->specialLock.key = 0;
|
|
span->specials = nil;
|
|
span->needzero = 0;
|
|
span->freebuf = nil;
|
|
}
|
|
|
|
// Initialize an empty doubly-linked list.
|
|
void
|
|
runtime_MSpanList_Init(MSpan *list)
|
|
{
|
|
list->state = MSpanListHead;
|
|
list->next = list;
|
|
list->prev = list;
|
|
}
|
|
|
|
void
|
|
runtime_MSpanList_Remove(MSpan *span)
|
|
{
|
|
if(span->prev == nil && span->next == nil)
|
|
return;
|
|
span->prev->next = span->next;
|
|
span->next->prev = span->prev;
|
|
span->prev = nil;
|
|
span->next = nil;
|
|
}
|
|
|
|
bool
|
|
runtime_MSpanList_IsEmpty(MSpan *list)
|
|
{
|
|
return list->next == list;
|
|
}
|
|
|
|
void
|
|
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
|
|
{
|
|
if(span->next != nil || span->prev != nil) {
|
|
runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
|
|
runtime_throw("MSpanList_Insert");
|
|
}
|
|
span->next = list->next;
|
|
span->prev = list;
|
|
span->next->prev = span;
|
|
span->prev->next = span;
|
|
}
|
|
|
|
void
|
|
runtime_MSpanList_InsertBack(MSpan *list, MSpan *span)
|
|
{
|
|
if(span->next != nil || span->prev != nil) {
|
|
runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
|
|
runtime_throw("MSpanList_Insert");
|
|
}
|
|
span->next = list;
|
|
span->prev = list->prev;
|
|
span->next->prev = span;
|
|
span->prev->next = span;
|
|
}
|
|
|
|
// Adds the special record s to the list of special records for
|
|
// the object p. All fields of s should be filled in except for
|
|
// offset & next, which this routine will fill in.
|
|
// Returns true if the special was successfully added, false otherwise.
|
|
// (The add will fail only if a record with the same p and s->kind
|
|
// already exists.)
|
|
static bool
|
|
addspecial(void *p, Special *s)
|
|
{
|
|
MSpan *span;
|
|
Special **t, *x;
|
|
uintptr offset;
|
|
byte kind;
|
|
|
|
span = runtime_MHeap_LookupMaybe(&runtime_mheap, p);
|
|
if(span == nil)
|
|
runtime_throw("addspecial on invalid pointer");
|
|
|
|
// Ensure that the span is swept.
|
|
// GC accesses specials list w/o locks. And it's just much safer.
|
|
runtime_m()->locks++;
|
|
runtime_MSpan_EnsureSwept(span);
|
|
|
|
offset = (uintptr)p - (span->start << PageShift);
|
|
kind = s->kind;
|
|
|
|
runtime_lock(&span->specialLock);
|
|
|
|
// Find splice point, check for existing record.
|
|
t = &span->specials;
|
|
while((x = *t) != nil) {
|
|
if(offset == x->offset && kind == x->kind) {
|
|
runtime_unlock(&span->specialLock);
|
|
runtime_m()->locks--;
|
|
return false; // already exists
|
|
}
|
|
if(offset < x->offset || (offset == x->offset && kind < x->kind))
|
|
break;
|
|
t = &x->next;
|
|
}
|
|
// Splice in record, fill in offset.
|
|
s->offset = offset;
|
|
s->next = x;
|
|
*t = s;
|
|
runtime_unlock(&span->specialLock);
|
|
runtime_m()->locks--;
|
|
return true;
|
|
}
|
|
|
|
// Removes the Special record of the given kind for the object p.
|
|
// Returns the record if the record existed, nil otherwise.
|
|
// The caller must FixAlloc_Free the result.
|
|
static Special*
|
|
removespecial(void *p, byte kind)
|
|
{
|
|
MSpan *span;
|
|
Special *s, **t;
|
|
uintptr offset;
|
|
|
|
span = runtime_MHeap_LookupMaybe(&runtime_mheap, p);
|
|
if(span == nil)
|
|
runtime_throw("removespecial on invalid pointer");
|
|
|
|
// Ensure that the span is swept.
|
|
// GC accesses specials list w/o locks. And it's just much safer.
|
|
runtime_m()->locks++;
|
|
runtime_MSpan_EnsureSwept(span);
|
|
|
|
offset = (uintptr)p - (span->start << PageShift);
|
|
|
|
runtime_lock(&span->specialLock);
|
|
t = &span->specials;
|
|
while((s = *t) != nil) {
|
|
// This function is used for finalizers only, so we don't check for
|
|
// "interior" specials (p must be exactly equal to s->offset).
|
|
if(offset == s->offset && kind == s->kind) {
|
|
*t = s->next;
|
|
runtime_unlock(&span->specialLock);
|
|
runtime_m()->locks--;
|
|
return s;
|
|
}
|
|
t = &s->next;
|
|
}
|
|
runtime_unlock(&span->specialLock);
|
|
runtime_m()->locks--;
|
|
return nil;
|
|
}
|
|
|
|
// Adds a finalizer to the object p. Returns true if it succeeded.
|
|
bool
|
|
runtime_addfinalizer(void *p, FuncVal *f, const FuncType *ft, const PtrType *ot)
|
|
{
|
|
SpecialFinalizer *s;
|
|
|
|
runtime_lock(&runtime_mheap.speciallock);
|
|
s = runtime_FixAlloc_Alloc(&runtime_mheap.specialfinalizeralloc);
|
|
runtime_unlock(&runtime_mheap.speciallock);
|
|
s->kind = KindSpecialFinalizer;
|
|
s->fn = f;
|
|
s->ft = ft;
|
|
s->ot = ot;
|
|
if(addspecial(p, s))
|
|
return true;
|
|
|
|
// There was an old finalizer
|
|
runtime_lock(&runtime_mheap.speciallock);
|
|
runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s);
|
|
runtime_unlock(&runtime_mheap.speciallock);
|
|
return false;
|
|
}
|
|
|
|
// Removes the finalizer (if any) from the object p.
|
|
void
|
|
runtime_removefinalizer(void *p)
|
|
{
|
|
SpecialFinalizer *s;
|
|
|
|
s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer);
|
|
if(s == nil)
|
|
return; // there wasn't a finalizer to remove
|
|
runtime_lock(&runtime_mheap.speciallock);
|
|
runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s);
|
|
runtime_unlock(&runtime_mheap.speciallock);
|
|
}
|
|
|
|
// Set the heap profile bucket associated with addr to b.
|
|
void
|
|
runtime_setprofilebucket(void *p, Bucket *b)
|
|
{
|
|
SpecialProfile *s;
|
|
|
|
runtime_lock(&runtime_mheap.speciallock);
|
|
s = runtime_FixAlloc_Alloc(&runtime_mheap.specialprofilealloc);
|
|
runtime_unlock(&runtime_mheap.speciallock);
|
|
s->kind = KindSpecialProfile;
|
|
s->b = b;
|
|
if(!addspecial(p, s))
|
|
runtime_throw("setprofilebucket: profile already set");
|
|
}
|
|
|
|
// Do whatever cleanup needs to be done to deallocate s. It has
|
|
// already been unlinked from the MSpan specials list.
|
|
// Returns true if we should keep working on deallocating p.
|
|
bool
|
|
runtime_freespecial(Special *s, void *p, uintptr size, bool freed)
|
|
{
|
|
SpecialFinalizer *sf;
|
|
SpecialProfile *sp;
|
|
|
|
switch(s->kind) {
|
|
case KindSpecialFinalizer:
|
|
sf = (SpecialFinalizer*)s;
|
|
runtime_queuefinalizer(p, sf->fn, sf->ft, sf->ot);
|
|
runtime_lock(&runtime_mheap.speciallock);
|
|
runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, sf);
|
|
runtime_unlock(&runtime_mheap.speciallock);
|
|
return false; // don't free p until finalizer is done
|
|
case KindSpecialProfile:
|
|
sp = (SpecialProfile*)s;
|
|
runtime_MProf_Free(sp->b, size, freed);
|
|
runtime_lock(&runtime_mheap.speciallock);
|
|
runtime_FixAlloc_Free(&runtime_mheap.specialprofilealloc, sp);
|
|
runtime_unlock(&runtime_mheap.speciallock);
|
|
return true;
|
|
default:
|
|
runtime_throw("bad special kind");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Free all special records for p.
|
|
void
|
|
runtime_freeallspecials(MSpan *span, void *p, uintptr size)
|
|
{
|
|
Special *s, **t, *list;
|
|
uintptr offset;
|
|
|
|
if(span->sweepgen != runtime_mheap.sweepgen)
|
|
runtime_throw("runtime: freeallspecials: unswept span");
|
|
// first, collect all specials into the list; then, free them
|
|
// this is required to not cause deadlock between span->specialLock and proflock
|
|
list = nil;
|
|
offset = (uintptr)p - (span->start << PageShift);
|
|
runtime_lock(&span->specialLock);
|
|
t = &span->specials;
|
|
while((s = *t) != nil) {
|
|
if(offset + size <= s->offset)
|
|
break;
|
|
if(offset <= s->offset) {
|
|
*t = s->next;
|
|
s->next = list;
|
|
list = s;
|
|
} else
|
|
t = &s->next;
|
|
}
|
|
runtime_unlock(&span->specialLock);
|
|
|
|
while(list != nil) {
|
|
s = list;
|
|
list = s->next;
|
|
if(!runtime_freespecial(s, p, size, true))
|
|
runtime_throw("can't explicitly free an object with a finalizer");
|
|
}
|
|
}
|
|
|
|
// Split an allocated span into two equal parts.
|
|
void
|
|
runtime_MHeap_SplitSpan(MHeap *h, MSpan *s)
|
|
{
|
|
MSpan *t;
|
|
MCentral *c;
|
|
uintptr i;
|
|
uintptr npages;
|
|
PageID p;
|
|
|
|
if(s->state != MSpanInUse)
|
|
runtime_throw("MHeap_SplitSpan on a free span");
|
|
if(s->sizeclass != 0 && s->ref != 1)
|
|
runtime_throw("MHeap_SplitSpan doesn't have an allocated object");
|
|
npages = s->npages;
|
|
|
|
// remove the span from whatever list it is in now
|
|
if(s->sizeclass > 0) {
|
|
// must be in h->central[x].empty
|
|
c = &h->central[s->sizeclass];
|
|
runtime_lock(c);
|
|
runtime_MSpanList_Remove(s);
|
|
runtime_unlock(c);
|
|
runtime_lock(h);
|
|
} else {
|
|
// must be in h->busy/busylarge
|
|
runtime_lock(h);
|
|
runtime_MSpanList_Remove(s);
|
|
}
|
|
// heap is locked now
|
|
|
|
if(npages == 1) {
|
|
// convert span of 1 PageSize object to a span of 2 PageSize/2 objects.
|
|
s->ref = 2;
|
|
s->sizeclass = runtime_SizeToClass(PageSize/2);
|
|
s->elemsize = PageSize/2;
|
|
} else {
|
|
// convert span of n>1 pages into two spans of n/2 pages each.
|
|
if((s->npages & 1) != 0)
|
|
runtime_throw("MHeap_SplitSpan on an odd size span");
|
|
|
|
// compute position in h->spans
|
|
p = s->start;
|
|
p -= (uintptr)h->arena_start >> PageShift;
|
|
|
|
// Allocate a new span for the first half.
|
|
t = runtime_FixAlloc_Alloc(&h->spanalloc);
|
|
runtime_MSpan_Init(t, s->start, npages/2);
|
|
t->limit = (byte*)((t->start + npages/2) << PageShift);
|
|
t->state = MSpanInUse;
|
|
t->elemsize = npages << (PageShift - 1);
|
|
t->sweepgen = s->sweepgen;
|
|
if(t->elemsize <= MaxSmallSize) {
|
|
t->sizeclass = runtime_SizeToClass(t->elemsize);
|
|
t->ref = 1;
|
|
}
|
|
|
|
// the old span holds the second half.
|
|
s->start += npages/2;
|
|
s->npages = npages/2;
|
|
s->elemsize = npages << (PageShift - 1);
|
|
if(s->elemsize <= MaxSmallSize) {
|
|
s->sizeclass = runtime_SizeToClass(s->elemsize);
|
|
s->ref = 1;
|
|
}
|
|
|
|
// update span lookup table
|
|
for(i = p; i < p + npages/2; i++)
|
|
h->spans[i] = t;
|
|
}
|
|
|
|
// place the span into a new list
|
|
if(s->sizeclass > 0) {
|
|
runtime_unlock(h);
|
|
c = &h->central[s->sizeclass];
|
|
runtime_lock(c);
|
|
// swept spans are at the end of the list
|
|
runtime_MSpanList_InsertBack(&c->empty, s);
|
|
runtime_unlock(c);
|
|
} else {
|
|
// Swept spans are at the end of lists.
|
|
if(s->npages < nelem(h->free))
|
|
runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
|
|
else
|
|
runtime_MSpanList_InsertBack(&h->busylarge, s);
|
|
runtime_unlock(h);
|
|
}
|
|
}
|