mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-28 05:51:04 +00:00
193 lines
7.2 KiB
C
193 lines
7.2 KiB
C
/*
|
|
(C) Copyright 2001,2006,
|
|
International Business Machines Corporation,
|
|
Sony Computer Entertainment, Incorporated,
|
|
Toshiba Corporation,
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the names of the copyright holders nor the names of their
|
|
contributors may be used to endorse or promote products derived from this
|
|
software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#ifndef _REMAINDER_H_
|
|
#define _REMAINDER_H_ 1
|
|
|
|
#include <spu_intrinsics.h>
|
|
#include "headers/vec_literal.h"
|
|
|
|
static __inline double _remainder(double x, double y)
|
|
{
|
|
int n, shift;
|
|
vec_uchar16 swap_words = VEC_LITERAL(vec_uchar16, 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11);
|
|
vec_uchar16 propagate = VEC_LITERAL(vec_uchar16, 4,5,6,7, 192,192,192,192, 12,13,14,15, 192,192,192,192);
|
|
vec_uchar16 splat_hi = VEC_LITERAL(vec_uchar16, 0,1,2,3,0,1,2,3, 8,9,10,11, 8,9,10,11);
|
|
vec_uchar16 splat_lo = VEC_LITERAL(vec_uchar16, 4,5,6,7,4,5,6,7, 12,13,14,15, 12,13,14,15);
|
|
vec_uint4 vx, vy, z;
|
|
vec_uint4 x_hi, y_hi, y_lo;
|
|
vec_uint4 abs_x, abs_y, abs_2x, abs_2y;
|
|
vec_uint4 exp_x, exp_y;
|
|
vec_uint4 zero_x, zero_y;
|
|
vec_uint4 logb_x, logb_y;
|
|
vec_uint4 mant_x, mant_y;
|
|
vec_uint4 normal, norm, denorm;
|
|
vec_uint4 gt, eq, bias, y2_hi;
|
|
vec_uint4 nan_out;
|
|
vec_uint4 result, result0, resultx, cnt, sign, borrow;
|
|
vec_uint4 exp_special = VEC_SPLAT_U32(0x7FF00000);
|
|
vec_uint4 half_smax = VEC_SPLAT_U32(0x7FEFFFFF);
|
|
vec_uint4 lsb = (vec_uint4)(VEC_SPLAT_U64(0x0000000000000001ULL));
|
|
vec_uint4 sign_mask = (vec_uint4)(VEC_SPLAT_U64(0x8000000000000000ULL));
|
|
vec_uint4 implied_1 = (vec_uint4)(VEC_SPLAT_U64(0x0010000000000000ULL));
|
|
vec_uint4 mant_mask = (vec_uint4)(VEC_SPLAT_U64(0x000FFFFFFFFFFFFFULL));
|
|
|
|
vx = (vec_uint4)spu_promote(x, 0);
|
|
vy = (vec_uint4)spu_promote(y, 0);
|
|
|
|
abs_x = spu_andc(vx, sign_mask);
|
|
abs_y = spu_andc(vy, sign_mask);
|
|
|
|
abs_2y = spu_add(abs_y, implied_1);
|
|
|
|
sign = spu_and(vx, sign_mask);
|
|
|
|
|
|
/* Compute abs_x = fmodf(abs_x, 2*abs_y). If y is greater than 0.5*SMAX (SMAX is the maximum
|
|
* representable float), then return abs_x.
|
|
*/
|
|
{
|
|
x_hi = spu_shuffle(abs_x, abs_x, splat_hi);
|
|
y_lo = spu_shuffle(abs_y, abs_y, splat_lo);
|
|
y_hi = spu_shuffle(abs_y, abs_y, splat_hi);
|
|
y2_hi = spu_shuffle(abs_2y, abs_2y, splat_hi);
|
|
|
|
/* Force a NaN output if (1) abs_x is infinity or NaN or (2)
|
|
* abs_y is a NaN.
|
|
*/
|
|
nan_out = spu_or(spu_cmpgt(x_hi, half_smax),
|
|
spu_or(spu_cmpgt(y_hi, exp_special),
|
|
spu_and(spu_cmpeq(y_hi, exp_special),
|
|
spu_cmpgt(y_lo, 0))));
|
|
|
|
/* Determine ilogb of abs_x and abs_y and
|
|
* extract the mantissas (mant_x, mant_y)
|
|
*/
|
|
exp_x = spu_rlmask(x_hi, -20);
|
|
exp_y = spu_rlmask(y2_hi, -20);
|
|
|
|
resultx = spu_or(spu_cmpgt(y2_hi, x_hi), spu_cmpgt(y_hi, half_smax));
|
|
|
|
zero_x = spu_cmpeq(exp_x, 0);
|
|
zero_y = spu_cmpeq(exp_y, 0);
|
|
|
|
logb_x = spu_add(exp_x, -1023);
|
|
logb_y = spu_add(exp_y, -1023);
|
|
|
|
mant_x = spu_andc(spu_sel(implied_1, abs_x, mant_mask), zero_x);
|
|
mant_y = spu_andc(spu_sel(implied_1, abs_2y, mant_mask), zero_y);
|
|
|
|
/* Compute fixed point fmod of mant_x and mant_y. Set the flag,
|
|
* result0, to all ones if we detect that the final result is
|
|
* ever 0.
|
|
*/
|
|
result0 = spu_or(zero_x, zero_y);
|
|
|
|
n = spu_extract(spu_sub(logb_x, logb_y), 0);
|
|
|
|
while (n-- > 0) {
|
|
borrow = spu_genb(mant_x, mant_y);
|
|
borrow = spu_shuffle(borrow, borrow, propagate);
|
|
z = spu_subx(mant_x, mant_y, borrow);
|
|
|
|
result0 = spu_or(spu_cmpeq(spu_or(z, spu_shuffle(z, z, swap_words)), 0), result0);
|
|
|
|
mant_x = spu_sel(spu_slqw(mant_x, 1), spu_andc(spu_slqw(z, 1), lsb), spu_cmpgt((vec_int4)spu_shuffle(z, z, splat_hi), -1));
|
|
}
|
|
|
|
|
|
borrow = spu_genb(mant_x, mant_y);
|
|
borrow = spu_shuffle(borrow, borrow, propagate);
|
|
z = spu_subx(mant_x, mant_y, borrow);
|
|
|
|
mant_x = spu_sel(mant_x, z, spu_cmpgt((vec_int4)spu_shuffle(z, z, splat_hi), -1));
|
|
mant_x = spu_andc(mant_x, VEC_LITERAL(vec_uint4, 0,0,-1,-1));
|
|
|
|
result0 = spu_or(spu_cmpeq(spu_or(mant_x, spu_shuffle(mant_x, mant_x, swap_words)), 0), result0);
|
|
|
|
/* Convert the result back to floating point and restore
|
|
* the sign. If we flagged the result to be zero (result0),
|
|
* zero it. If we flagged the result to equal its input x,
|
|
* (resultx) then return x.
|
|
*
|
|
* Double precision generates a denorm for an output.
|
|
*/
|
|
cnt = spu_cntlz(mant_x);
|
|
cnt = spu_add(cnt, spu_and(spu_rlqwbyte(cnt, 4), spu_cmpeq(cnt, 32)));
|
|
cnt = spu_add(spu_shuffle(cnt, cnt, splat_hi), -11);
|
|
|
|
shift = spu_extract(exp_y, 0) - 1;
|
|
denorm = spu_slqwbytebc(spu_slqw(mant_x, shift), shift);
|
|
|
|
exp_y = spu_sub(exp_y, cnt);
|
|
|
|
normal = spu_cmpgt((vec_int4)exp_y, 0);
|
|
|
|
/* Normalize normal results, denormalize denorm results.
|
|
*/
|
|
shift = spu_extract(cnt, 0);
|
|
norm = spu_slqwbytebc(spu_slqw(spu_andc(mant_x, VEC_LITERAL(vec_uint4, 0x00100000, 0, -1, -1)), shift), shift);
|
|
|
|
mant_x = spu_sel(denorm, norm, normal);
|
|
|
|
exp_y = spu_and(spu_rl(exp_y, 20), normal);
|
|
|
|
result = spu_sel(exp_y, mant_x, mant_mask);
|
|
|
|
abs_x = spu_sel(spu_andc(result, spu_rlmask(result0, -1)), abs_x, resultx);
|
|
|
|
}
|
|
|
|
/* if (2*x > y)
|
|
* x -= y
|
|
* if (2*x >= y) x -= y
|
|
*/
|
|
abs_2x = spu_and(spu_add(abs_x, implied_1), normal);
|
|
|
|
gt = spu_cmpgt(abs_2x, abs_y);
|
|
eq = spu_cmpeq(abs_2x, abs_y);
|
|
bias = spu_or(gt, spu_and(eq, spu_rlqwbyte(gt, 4)));
|
|
bias = spu_shuffle(bias, bias, splat_hi);
|
|
abs_x = spu_sel(abs_x, (vec_uint4)spu_sub((vec_double2)abs_x, (vec_double2)abs_y), bias);
|
|
|
|
bias = spu_andc(bias, spu_rlmaska((vec_uint4)spu_msub((vec_double2)abs_x, VEC_SPLAT_F64(2.0), (vec_double2)abs_y), -31));
|
|
bias = spu_shuffle(bias, bias, splat_hi);
|
|
abs_x = spu_sel(abs_x, (vec_uint4)spu_sub((vec_double2)abs_x, (vec_double2)abs_y), bias);
|
|
|
|
/* Generate a correct final sign
|
|
*/
|
|
result = spu_sel(spu_xor(abs_x, sign), exp_special, nan_out);
|
|
|
|
return (spu_extract((vec_double2)result, 0));
|
|
}
|
|
#endif /* _REMAINDER_H_ */
|