Retro68/gcc/libquadmath/math/csinhq.c
Wolfgang Thaller 6fbf4226da gcc-9.1
2019-06-20 20:10:10 +02:00

151 lines
3.6 KiB
C

/* Complex sine hyperbole function for float types.
Copyright (C) 1997-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
__complex128
csinhq (__complex128 x)
{
__complex128 retval;
int negate = signbitq (__real__ x);
int rcls = fpclassifyq (__real__ x);
int icls = fpclassifyq (__imag__ x);
__real__ x = fabsq (__real__ x);
if (__glibc_likely (rcls >= QUADFP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= QUADFP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
__float128 sinix, cosix;
if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
if (negate)
cosix = -cosix;
if (fabsq (__real__ x) > t)
{
__float128 exp_t = expq (t);
__float128 rx = fabsq (__real__ x);
if (signbitq (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2;
cosix *= exp_t / 2;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT128_MAX * cosix;
__imag__ retval = FLT128_MAX * sinix;
}
else
{
__float128 exp_val = expq (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = sinhq (__real__ x) * cosix;
__imag__ retval = coshq (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (rcls == QUADFP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = copysignq (0, negate ? -1 : 1);
__imag__ retval = __imag__ x - __imag__ x;
}
else
{
__real__ retval = nanq ("");
__imag__ retval = nanq ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (rcls == QUADFP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > QUADFP_ZERO))
{
/* Imaginary part is finite. */
__float128 sinix, cosix;
if (__glibc_likely (fabsq (__imag__ x) > FLT128_MIN))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
__real__ retval = copysignq (HUGE_VALQ, cosix);
__imag__ retval = copysignq (HUGE_VALQ, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == QUADFP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALQ : HUGE_VALQ;
__imag__ retval = __imag__ x;
}
else
{
__real__ retval = HUGE_VALQ;
__imag__ retval = __imag__ x - __imag__ x;
}
}
else
{
__real__ retval = nanq ("");
__imag__ retval = __imag__ x == 0 ? __imag__ x : nanq ("");
}
return retval;
}