mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-01 11:52:47 +00:00
193 lines
5.0 KiB
Go
193 lines
5.0 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package jpeg
|
|
|
|
// This is a Go translation of idct.c from
|
|
//
|
|
// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
|
|
//
|
|
// which carries the following notice:
|
|
|
|
/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
|
|
|
|
/*
|
|
* Disclaimer of Warranty
|
|
*
|
|
* These software programs are available to the user without any license fee or
|
|
* royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
|
|
* any and all warranties, whether express, implied, or statuary, including any
|
|
* implied warranties or merchantability or of fitness for a particular
|
|
* purpose. In no event shall the copyright-holder be liable for any
|
|
* incidental, punitive, or consequential damages of any kind whatsoever
|
|
* arising from the use of these programs.
|
|
*
|
|
* This disclaimer of warranty extends to the user of these programs and user's
|
|
* customers, employees, agents, transferees, successors, and assigns.
|
|
*
|
|
* The MPEG Software Simulation Group does not represent or warrant that the
|
|
* programs furnished hereunder are free of infringement of any third-party
|
|
* patents.
|
|
*
|
|
* Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
|
|
* are subject to royalty fees to patent holders. Many of these patents are
|
|
* general enough such that they are unavoidable regardless of implementation
|
|
* design.
|
|
*
|
|
*/
|
|
|
|
const blockSize = 64 // A DCT block is 8x8.
|
|
|
|
type block [blockSize]int32
|
|
|
|
const (
|
|
w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
|
|
w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
|
|
w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
|
|
w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
|
|
w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
|
|
w7 = 565 // 2048*sqrt(2)*cos(7*pi/16)
|
|
|
|
w1pw7 = w1 + w7
|
|
w1mw7 = w1 - w7
|
|
w2pw6 = w2 + w6
|
|
w2mw6 = w2 - w6
|
|
w3pw5 = w3 + w5
|
|
w3mw5 = w3 - w5
|
|
|
|
r2 = 181 // 256/sqrt(2)
|
|
)
|
|
|
|
// idct performs a 2-D Inverse Discrete Cosine Transformation.
|
|
//
|
|
// The input coefficients should already have been multiplied by the
|
|
// appropriate quantization table. We use fixed-point computation, with the
|
|
// number of bits for the fractional component varying over the intermediate
|
|
// stages.
|
|
//
|
|
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
|
|
// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
|
|
// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
|
|
func idct(src *block) {
|
|
// Horizontal 1-D IDCT.
|
|
for y := 0; y < 8; y++ {
|
|
y8 := y * 8
|
|
// If all the AC components are zero, then the IDCT is trivial.
|
|
if src[y8+1] == 0 && src[y8+2] == 0 && src[y8+3] == 0 &&
|
|
src[y8+4] == 0 && src[y8+5] == 0 && src[y8+6] == 0 && src[y8+7] == 0 {
|
|
dc := src[y8+0] << 3
|
|
src[y8+0] = dc
|
|
src[y8+1] = dc
|
|
src[y8+2] = dc
|
|
src[y8+3] = dc
|
|
src[y8+4] = dc
|
|
src[y8+5] = dc
|
|
src[y8+6] = dc
|
|
src[y8+7] = dc
|
|
continue
|
|
}
|
|
|
|
// Prescale.
|
|
x0 := (src[y8+0] << 11) + 128
|
|
x1 := src[y8+4] << 11
|
|
x2 := src[y8+6]
|
|
x3 := src[y8+2]
|
|
x4 := src[y8+1]
|
|
x5 := src[y8+7]
|
|
x6 := src[y8+5]
|
|
x7 := src[y8+3]
|
|
|
|
// Stage 1.
|
|
x8 := w7 * (x4 + x5)
|
|
x4 = x8 + w1mw7*x4
|
|
x5 = x8 - w1pw7*x5
|
|
x8 = w3 * (x6 + x7)
|
|
x6 = x8 - w3mw5*x6
|
|
x7 = x8 - w3pw5*x7
|
|
|
|
// Stage 2.
|
|
x8 = x0 + x1
|
|
x0 -= x1
|
|
x1 = w6 * (x3 + x2)
|
|
x2 = x1 - w2pw6*x2
|
|
x3 = x1 + w2mw6*x3
|
|
x1 = x4 + x6
|
|
x4 -= x6
|
|
x6 = x5 + x7
|
|
x5 -= x7
|
|
|
|
// Stage 3.
|
|
x7 = x8 + x3
|
|
x8 -= x3
|
|
x3 = x0 + x2
|
|
x0 -= x2
|
|
x2 = (r2*(x4+x5) + 128) >> 8
|
|
x4 = (r2*(x4-x5) + 128) >> 8
|
|
|
|
// Stage 4.
|
|
src[y8+0] = (x7 + x1) >> 8
|
|
src[y8+1] = (x3 + x2) >> 8
|
|
src[y8+2] = (x0 + x4) >> 8
|
|
src[y8+3] = (x8 + x6) >> 8
|
|
src[y8+4] = (x8 - x6) >> 8
|
|
src[y8+5] = (x0 - x4) >> 8
|
|
src[y8+6] = (x3 - x2) >> 8
|
|
src[y8+7] = (x7 - x1) >> 8
|
|
}
|
|
|
|
// Vertical 1-D IDCT.
|
|
for x := 0; x < 8; x++ {
|
|
// Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
|
|
// However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
|
|
// we do not bother to check for the all-zero case.
|
|
|
|
// Prescale.
|
|
y0 := (src[8*0+x] << 8) + 8192
|
|
y1 := src[8*4+x] << 8
|
|
y2 := src[8*6+x]
|
|
y3 := src[8*2+x]
|
|
y4 := src[8*1+x]
|
|
y5 := src[8*7+x]
|
|
y6 := src[8*5+x]
|
|
y7 := src[8*3+x]
|
|
|
|
// Stage 1.
|
|
y8 := w7*(y4+y5) + 4
|
|
y4 = (y8 + w1mw7*y4) >> 3
|
|
y5 = (y8 - w1pw7*y5) >> 3
|
|
y8 = w3*(y6+y7) + 4
|
|
y6 = (y8 - w3mw5*y6) >> 3
|
|
y7 = (y8 - w3pw5*y7) >> 3
|
|
|
|
// Stage 2.
|
|
y8 = y0 + y1
|
|
y0 -= y1
|
|
y1 = w6*(y3+y2) + 4
|
|
y2 = (y1 - w2pw6*y2) >> 3
|
|
y3 = (y1 + w2mw6*y3) >> 3
|
|
y1 = y4 + y6
|
|
y4 -= y6
|
|
y6 = y5 + y7
|
|
y5 -= y7
|
|
|
|
// Stage 3.
|
|
y7 = y8 + y3
|
|
y8 -= y3
|
|
y3 = y0 + y2
|
|
y0 -= y2
|
|
y2 = (r2*(y4+y5) + 128) >> 8
|
|
y4 = (r2*(y4-y5) + 128) >> 8
|
|
|
|
// Stage 4.
|
|
src[8*0+x] = (y7 + y1) >> 14
|
|
src[8*1+x] = (y3 + y2) >> 14
|
|
src[8*2+x] = (y0 + y4) >> 14
|
|
src[8*3+x] = (y8 + y6) >> 14
|
|
src[8*4+x] = (y8 - y6) >> 14
|
|
src[8*5+x] = (y0 - y4) >> 14
|
|
src[8*6+x] = (y3 - y2) >> 14
|
|
src[8*7+x] = (y7 - y1) >> 14
|
|
}
|
|
}
|