Retro68/gcc/libgo/go/crypto/cipher/example_test.go
Wolfgang Thaller 6fbf4226da gcc-9.1
2019-06-20 20:10:10 +02:00

364 lines
12 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cipher_test
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/hex"
"fmt"
"io"
"os"
)
func ExampleNewGCM_encrypt() {
// Load your secret key from a safe place and reuse it across multiple
// Seal/Open calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
// When decoded the key should be 16 bytes (AES-128) or 32 (AES-256).
key, _ := hex.DecodeString("6368616e676520746869732070617373776f726420746f206120736563726574")
plaintext := []byte("exampleplaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err.Error())
}
// Never use more than 2^32 random nonces with a given key because of the risk of a repeat.
nonce := make([]byte, 12)
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
panic(err.Error())
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
ciphertext := aesgcm.Seal(nil, nonce, plaintext, nil)
fmt.Printf("%x\n", ciphertext)
}
func ExampleNewGCM_decrypt() {
// Load your secret key from a safe place and reuse it across multiple
// Seal/Open calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
// When decoded the key should be 16 bytes (AES-128) or 32 (AES-256).
key, _ := hex.DecodeString("6368616e676520746869732070617373776f726420746f206120736563726574")
ciphertext, _ := hex.DecodeString("c3aaa29f002ca75870806e44086700f62ce4d43e902b3888e23ceff797a7a471")
nonce, _ := hex.DecodeString("64a9433eae7ccceee2fc0eda")
block, err := aes.NewCipher(key)
if err != nil {
panic(err.Error())
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
plaintext, err := aesgcm.Open(nil, nonce, ciphertext, nil)
if err != nil {
panic(err.Error())
}
fmt.Printf("%s\n", plaintext)
// Output: exampleplaintext
}
func ExampleNewCBCDecrypter() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
ciphertext, _ := hex.DecodeString("73c86d43a9d700a253a96c85b0f6b03ac9792e0e757f869cca306bd3cba1c62b")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
// CBC mode always works in whole blocks.
if len(ciphertext)%aes.BlockSize != 0 {
panic("ciphertext is not a multiple of the block size")
}
mode := cipher.NewCBCDecrypter(block, iv)
// CryptBlocks can work in-place if the two arguments are the same.
mode.CryptBlocks(ciphertext, ciphertext)
// If the original plaintext lengths are not a multiple of the block
// size, padding would have to be added when encrypting, which would be
// removed at this point. For an example, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. However, it's
// critical to note that ciphertexts must be authenticated (i.e. by
// using crypto/hmac) before being decrypted in order to avoid creating
// a padding oracle.
fmt.Printf("%s\n", ciphertext)
// Output: exampleplaintext
}
func ExampleNewCBCEncrypter() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
plaintext := []byte("exampleplaintext")
// CBC mode works on blocks so plaintexts may need to be padded to the
// next whole block. For an example of such padding, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. Here we'll
// assume that the plaintext is already of the correct length.
if len(plaintext)%aes.BlockSize != 0 {
panic("plaintext is not a multiple of the block size")
}
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
fmt.Printf("%x\n", ciphertext)
}
func ExampleNewCFBDecrypter() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
ciphertext, _ := hex.DecodeString("7dd015f06bec7f1b8f6559dad89f4131da62261786845100056b353194ad")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
// XORKeyStream can work in-place if the two arguments are the same.
stream.XORKeyStream(ciphertext, ciphertext)
fmt.Printf("%s", ciphertext)
// Output: some plaintext
}
func ExampleNewCFBEncrypter() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
fmt.Printf("%x\n", ciphertext)
}
func ExampleNewCTR() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
// CTR mode is the same for both encryption and decryption, so we can
// also decrypt that ciphertext with NewCTR.
plaintext2 := make([]byte, len(plaintext))
stream = cipher.NewCTR(block, iv)
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
fmt.Printf("%s\n", plaintext2)
// Output: some plaintext
}
func ExampleNewOFB() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewOFB(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
// OFB mode is the same for both encryption and decryption, so we can
// also decrypt that ciphertext with NewOFB.
plaintext2 := make([]byte, len(plaintext))
stream = cipher.NewOFB(block, iv)
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
fmt.Printf("%s\n", plaintext2)
// Output: some plaintext
}
func ExampleStreamReader() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
encrypted, _ := hex.DecodeString("cf0495cc6f75dafc23948538e79904a9")
bReader := bytes.NewReader(encrypted)
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// If the key is unique for each ciphertext, then it's ok to use a zero
// IV.
var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])
reader := &cipher.StreamReader{S: stream, R: bReader}
// Copy the input to the output stream, decrypting as we go.
if _, err := io.Copy(os.Stdout, reader); err != nil {
panic(err)
}
// Note that this example is simplistic in that it omits any
// authentication of the encrypted data. If you were actually to use
// StreamReader in this manner, an attacker could flip arbitrary bits in
// the output.
// Output: some secret text
}
func ExampleStreamWriter() {
// Load your secret key from a safe place and reuse it across multiple
// NewCipher calls. (Obviously don't use this example key for anything
// real.) If you want to convert a passphrase to a key, use a suitable
// package like bcrypt or scrypt.
key, _ := hex.DecodeString("6368616e676520746869732070617373")
bReader := bytes.NewReader([]byte("some secret text"))
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// If the key is unique for each ciphertext, then it's ok to use a zero
// IV.
var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])
var out bytes.Buffer
writer := &cipher.StreamWriter{S: stream, W: &out}
// Copy the input to the output buffer, encrypting as we go.
if _, err := io.Copy(writer, bReader); err != nil {
panic(err)
}
// Note that this example is simplistic in that it omits any
// authentication of the encrypted data. If you were actually to use
// StreamReader in this manner, an attacker could flip arbitrary bits in
// the decrypted result.
fmt.Printf("%x\n", out.Bytes())
// Output: cf0495cc6f75dafc23948538e79904a9
}