mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-30 19:53:46 +00:00
187 lines
4.4 KiB
Go
187 lines
4.4 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package cmplx
|
|
|
|
import "math"
|
|
|
|
// The original C code, the long comment, and the constants
|
|
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
|
|
// The go code is a simplified version of the original C.
|
|
//
|
|
// Cephes Math Library Release 2.8: June, 2000
|
|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
//
|
|
// The readme file at http://netlib.sandia.gov/cephes/ says:
|
|
// Some software in this archive may be from the book _Methods and
|
|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
|
// International, 1989) or from the Cephes Mathematical Library, a
|
|
// commercial product. In either event, it is copyrighted by the author.
|
|
// What you see here may be used freely but it comes with no support or
|
|
// guarantee.
|
|
//
|
|
// The two known misprints in the book are repaired here in the
|
|
// source listings for the gamma function and the incomplete beta
|
|
// integral.
|
|
//
|
|
// Stephen L. Moshier
|
|
// moshier@na-net.ornl.gov
|
|
|
|
// Complex circular tangent
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// If
|
|
// z = x + iy,
|
|
//
|
|
// then
|
|
//
|
|
// sin 2x + i sinh 2y
|
|
// w = --------------------.
|
|
// cos 2x + cosh 2y
|
|
//
|
|
// On the real axis the denominator is zero at odd multiples
|
|
// of PI/2. The denominator is evaluated by its Taylor
|
|
// series near these points.
|
|
//
|
|
// ctan(z) = -i ctanh(iz).
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// DEC -10,+10 5200 7.1e-17 1.6e-17
|
|
// IEEE -10,+10 30000 7.2e-16 1.2e-16
|
|
// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
|
|
|
|
// Tan returns the tangent of x.
|
|
func Tan(x complex128) complex128 {
|
|
d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
|
|
if math.Abs(d) < 0.25 {
|
|
d = tanSeries(x)
|
|
}
|
|
if d == 0 {
|
|
return Inf()
|
|
}
|
|
return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
|
|
}
|
|
|
|
// Complex hyperbolic tangent
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// IEEE -10,+10 30000 1.7e-14 2.4e-16
|
|
|
|
// Tanh returns the hyperbolic tangent of x.
|
|
func Tanh(x complex128) complex128 {
|
|
d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
|
|
if d == 0 {
|
|
return Inf()
|
|
}
|
|
return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
|
|
}
|
|
|
|
// Program to subtract nearest integer multiple of PI
|
|
func reducePi(x float64) float64 {
|
|
const (
|
|
// extended precision value of PI:
|
|
DP1 = 3.14159265160560607910E0 // ?? 0x400921fb54000000
|
|
DP2 = 1.98418714791870343106E-9 // ?? 0x3e210b4610000000
|
|
DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e
|
|
)
|
|
t := x / math.Pi
|
|
if t >= 0 {
|
|
t += 0.5
|
|
} else {
|
|
t -= 0.5
|
|
}
|
|
t = float64(int64(t)) // int64(t) = the multiple
|
|
return ((x - t*DP1) - t*DP2) - t*DP3
|
|
}
|
|
|
|
// Taylor series expansion for cosh(2y) - cos(2x)
|
|
func tanSeries(z complex128) float64 {
|
|
const MACHEP = 1.0 / (1 << 53)
|
|
x := math.Abs(2 * real(z))
|
|
y := math.Abs(2 * imag(z))
|
|
x = reducePi(x)
|
|
x = x * x
|
|
y = y * y
|
|
x2 := 1.0
|
|
y2 := 1.0
|
|
f := 1.0
|
|
rn := 0.0
|
|
d := 0.0
|
|
for {
|
|
rn++
|
|
f *= rn
|
|
rn++
|
|
f *= rn
|
|
x2 *= x
|
|
y2 *= y
|
|
t := y2 + x2
|
|
t /= f
|
|
d += t
|
|
|
|
rn++
|
|
f *= rn
|
|
rn++
|
|
f *= rn
|
|
x2 *= x
|
|
y2 *= y
|
|
t = y2 - x2
|
|
t /= f
|
|
d += t
|
|
if !(math.Abs(t/d) > MACHEP) {
|
|
// Caution: Use ! and > instead of <= for correct behavior if t/d is NaN.
|
|
// See issue 17577.
|
|
break
|
|
}
|
|
}
|
|
return d
|
|
}
|
|
|
|
// Complex circular cotangent
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// If
|
|
// z = x + iy,
|
|
//
|
|
// then
|
|
//
|
|
// sin 2x - i sinh 2y
|
|
// w = --------------------.
|
|
// cosh 2y - cos 2x
|
|
//
|
|
// On the real axis, the denominator has zeros at even
|
|
// multiples of PI/2. Near these points it is evaluated
|
|
// by a Taylor series.
|
|
//
|
|
// ACCURACY:
|
|
//
|
|
// Relative error:
|
|
// arithmetic domain # trials peak rms
|
|
// DEC -10,+10 3000 6.5e-17 1.6e-17
|
|
// IEEE -10,+10 30000 9.2e-16 1.2e-16
|
|
// Also tested by ctan * ccot = 1 + i0.
|
|
|
|
// Cot returns the cotangent of x.
|
|
func Cot(x complex128) complex128 {
|
|
d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
|
|
if math.Abs(d) < 0.25 {
|
|
d = tanSeries(x)
|
|
}
|
|
if d == 0 {
|
|
return Inf()
|
|
}
|
|
return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
|
|
}
|